Subject Index

A
Abstract factor analysis, 156, 157–160, 163–165
Additive mixtures, classification of, 13
American Cyanamid, 2
Analytical chemistry, 1, 6
ASTM E 168, 1, 4

B
Band ratio methods, 128
Beer's law, 22, 25, 38, 59, 101, 120, 122, 167
methods to include nonlinearities in quantitative spectral analysis, 78–93
quantitative infrared analysis, 95
sources of apparent deviation from, 38, 40
Blood serum, use of computerized quantitative infrared spectroscopy to determine lipids in, 131–154

C
Chemistry, 1
C-matrix, 19
Computerized infrared spectroscopy
applications of, in petroleum industry, 4, 36–57
use of, for novel quantitative polymer analysis, 58–76
use of, to determine lipids in blood serum, 131–154
Computerized techniques, use of, to carry out multicomponent analysis infrared methods, 4–5
Cross validation, 159

D
Deuterated triglycine sulfate (DTGS) detectors, 2
Difference spectroscopy, use of, in quantitative analysis, 71–74
Diffuse reflectance, 123–126
Diffuse reflectance infrared spectra, 59–67
Double beam infrared spectrometer, introduction of, 2

E
Eigenvector space, generalized plot of, 31

F
Factor analysis
potential of, in infrared spectroscopy, 155
use of, in quantitative spectroscopic applications, 5
Fluorescence emission-excitation matrices (EEMs), application of, in analytical chemistry, 26–28, 32–33
Fourier deconvolution, 50–53, 170
Fourier transform infrared (FT-IR) spectrometers, 79

effect of, on standard setting, 3–4

evolution of, 2

introduction of, 37

use of, for complex samples, 95–129

appropriate calibration samples, 109–110

back-calculation of original concentration, 99–100

diffuse reflectance, 123–126

future developments, 128

K-matrix approach, 97–103

microsampling, 127

minor component analysis, 110–116

photoacoustic spectroscopy, 123, 126–127

P-matrix approach, 103–106

reproducible sample handling, 127–128

theory, 96–97

potential of factor analysis in, 155

International Union of Pure and Applied Chemistry (IUPAC), 40

K

Key-set analysis, 165

Kirchhoff's law, 74

K-matrix analysis, 4, 12, 14–21, 37, 97–99, 107, 113–114, 116

back-calculation of original concentrations, 99–100

calibration with mixtures, 110

dealing with spectral overlap, 139–141

diffuse reflectance, 123

future of, 128

intercepts in, 101

limitations to, 101–103

overdetermination in, 100

Kubelka-Munk function, 64–65

G

Gas chromatography (GC) method, replacement of infrared methods by, 2, 37

Gaussian distribution, 8

Generalized standard addition method (GSAM), use of, in multicomponent calibration, 18–26

I

Infrared difference spectroscopy applications of, 38

history of developments in, 4, 6–35

need for caution in use of computers in, 169–178

L

Least squares method, use of, to estimate position of calibration line, 8

Least squares multiple regression, application of, in analytical chemistry, 27

Lipids, use of computerized quantitative infrared spectroscopy to determine, in blood serum, 131–154

M

Mercury-cadmium telluride (MCT) detector, 2

Micro (IRS) internal reflection spectroscopy, 54–55
Microprocessor technology, incorporation of, into infrared instruments, 2

Microsampling, 127

Multicomponent analysis infrared methods, use of computerized techniques, 4–5

Multicomponent analysis of lipids, 139

Multicomponent bilinear models use of, in infrared quantitative analysis, 26–33
least squares multiple regression, 27
rank annihilation, 27–28
self-modeling curve resolution, 29–33

Multi-component linear model use of, in infrared quantitative analysis, 11–26
calibration, 13–21
deterministic errors, 23–26
quantitation, 21–23
sample classification, 12–13

Multivariate least-squares calibration, 79, 91

Overdetermination, importance of, 106–109

Partial least squares (PLS), use of, in multicomponent calibration, 16–18

Perkin-Elmer, 2

Petroleum products, application of computer-assisted quantitative infrared spectroscopy to, 4, 36–57

Photoacoustic spectroscopy (PAS), 64, 66–67, 123–127
sample handling in, 127–128

P-matrix analysis, 4, 82, 103–104, 116
advantages of, 104–105
calibration with mixtures, 110
dealing with spectral overlap, 141–142
future of, 128
limitations to, 105–106

Polymer films, thermal radiative properties of, 74–76

Q-matrix approach, 4–5, 133
dealing with spectral overlap, 142–146
lipid analysis data obtained with, 146–153

Quantitative absorption spectroscopy application of target factor analysis to, 155–167
data manipulation in, 67–71
difference spectroscopy in, 71–74
methods for including Beer’s law nonlinearities in, 78–93
use of factor analysis in, 5

N

Novel quantitative polymer analysis, use of computerized infrared spectroscopy for, 58–76

Nuclear magnetic resonance (NMR) spectroscopy, replacement of infrared methods by, 37

O

Optical null double beam instruments, 2
R
Rank annihilation, application of, in analytical chemistry, 27-28
Resolution enhancement (deconvolution), 36
R-matrix, 19
Root-mean-square (RMS) difference, 158

S
Self-modeling curve resolution, application of, in analytical chemistry, 29-33
Single component linear model, use of, in infrared quantitative analysis, 7-11
deterministic error, 10-11
random error, 8-10
Spectral stripping, 36
Spectral substraction, 42, 44-45, 47, 170-171
Spectroscopic determinations, need for caution in use of computers in, 5, 169-178

T
Target factor analysis, application of, to quantitative absorption spectroscopy, 155-167
Thermal radiative properties, of polymer films, 74-76
Tyndall scattering, 40

V
Variable subtraction, 47-50
V-matrix, 22-23

W
Weighted least squares regression, 9, 10

Z
Zero transmittance point, location of, 2
Z-matrix, 156