Subject Index

A

Acceleration, 120, 126, 132
Accelerometer, 130, 284-285
Acetal, 351-367
Acrylonitrile-butadiene-styrene (ABS), 236-237
bottles, 19
ductile-brittle transition, 240-242, 245-246
fatigue testing, 282
impact behavior of, illustration, 166
incipient crack formation testing, 327-333
terpolymers, 176
Aircraft materials and structure, 224, 227
Aluminum alloys, 166
energy absorption, 234
impact data, 171
Type 6061 T6, 221
Analog/digital (A/D) converter, 12
Analog/digital (A/D) resolution, 14
Antialiasing filter, 84
Aramid-reinforced composites, 219-235
ASTM Committee D-20 on plastics, 45, 174
ASTM standards
D 256-81: 19, 147, 162, 284, 285
D 256-84: 237
D 638-82a: 262
D 790-81: 149, 266
D 1822-83: 162
D 1822-84: 147
D 2585-68(1980): 221
D 3029-82: 164, 165
D 3763-79: 19, 178, 183
E 23-82: 180, 182
E 399-83: 349, 353
Automotive applications
dart impact evaluation of materials, 44-57
impact data for steel and aluminum in, 171
impact stress states in, 28-30, 31-32
impact testing materials, 24-43
plastics in, 58, 162

B

Bending
biaxial, 27, 39, 43, 160
illustration, 31-32
table, 28
normal shear, 39
uniaxial, 27, 43
illustration, 31-32
table, 28
Bismaleimide systems, 253, 259
Boat laminates, 192-197
Bottles, burst pressure, 221, 223, 226-227, 233, 234
Boxcar function, 84-86, 94
illustration, 88
Break
elongation at, 148, 239
energies, 282
point, 34-35
response, 42
Brittle behavior, 94, 98, 350
Brittle-ductile transition, 329, 330
Brittle initiation, 344
Bulk molding compound (BMC), impact damage, 303
Bump impact, 192
illustration, 196, 198, 202, 204-205
table, 199, 203
Burst pressure, 221, 223, 226-227, 233, 234
Burst testing, 226-227

C
Carbon dioxide, 105
Carbon fibers, 221, 223, 226, 230, 233, 234
Charpy testing, 39, 54, 59, 145, 147, 159
apparatus, 166
evaluation of composites, 180-183
inadequacies, 164, 168, 169
of metals, 16, 284
Cinematography, high-speed, 284
Circuit board laminates, table, 171
Composite materials
aramid-reinforced, 219-235
in automotive applications, 41-42
impact controlling variables, 28-33
table, 36
instrumented dart impact evaluation, 44-57
selecting impact tests, 25-28, 43
table, 39
testing analysis and specifications, 35-41
illustration, 37
carbon fiber, 223, 226, 230, 233, 234
glass fiber, 180, 181
graphite/epoxy, 248-249, 253-260
impact behavior analysis, 58-80
impact characterization, 248-261
impact damage tolerance, 219
nonmetallic, 169
prediction of end-use impact resistance, 187-216
Compression characteristics, 122-123
Compression testing
of foams, 140-141
static, 127
Compressive strength, 260
Computer simulation of impact response, 313-317
Crack, 49, 53
extension of, 49-50
formation in polymers, 324-334
initiation, 53, 54, 269
instability, illustration, 354
length, 346-347, 355, 359-363, 366
penetration depths, 329
propagation plane, 362
Cracks, multiple unstable, 325
Crack tip
blunting, 359
stress field around, 74
Crazing, 314, 362
deformation, 245
initiation, 240-241, 245-246
multiple, 237
termination, 240
Crystalline materials, 290, 292, 298, 300, 359
Cushioning material, 119
deformation, 121-122
impact and compression testing of, 118-142
Cylindrical blowout, 328

D
Damage measurement method, 259, 260
Damping, 141
 characteristics, 118-120, 124
 in cushioning material, 127-130
 effect of, 136, 140
 illustration, 121
 quarter cycle, 132-134
 table, 136
 Rayleigh, 119
Deceleration, impact, 120, 130-135
Deflection, 46-47, 110
 absorbing, 32-33
 at failure, 99
 yield, 151
Deformation, 54, 119
 biaxial flexural, 47
 in cushioning material, 121-122, 127
 ductile, 331
 elastic analysis, 271
 filament wound pipe, 200
 of foams, 135, 136
 without fracture, 314
 idealized dart, 47-50
 impact velocity and, 315
 illustration, 316
 linear elastic, 33
 linear load-deflection, 47, 49
 with partial impacts, 306, 317-320
 illustration, 316
 plastic, 33, 49
 with ram displacement, 310
 rates, 238
 stable or slow-rate, 49-50
 stages and transitions, 50
Delamination, 180, 233, 260
 glass fiber/resin matrix, 200
 inhibition of, 253
 plastic, 52
Density, 11, 108
Discontinuities, 85, 166
Displacement, 119
 compression, 126-127
 nodal, 123
 reliability of values, 284
Driven dart testing, 145, 149-151, 155, 160-161
Drop dart testing, 145, 148, 159, 160
 illustration, 149
Drop height, 329
Drop testing
 of low-energy compression impact, 123-130
 polystyrene, 136-141
 results, table, 130
Drop tower, 332, 333
 impact tester, 325
 instrumented, 175, 178
Drop tower impact testing, 220, 333
 impact fatigue testing of polymers, 281-301
 table, 328
Drop-weight testing, 59, 145
 limitations, 165
 machines, 10
Ductile failure, 239, 245
Ductile-brittle material, 84, 86
 illustration, 92
Ductile-brittle transition, 237, 239-242, 244-246
Ductility index, 166-169, 173-174

E
Elastic distortion, 119
Elastic modulus, 349
Elongation at break, 148, 239
Embrittlement (see also Failure, brittle) 268, 270, 275, 276, 277
End-use impact resistance, 187-216
Energy, 47
 absorption, 32, 241, 259, 298
 in ductile fracture, 287-289
 analysis of measurement, 337-350
 break, 110-111, 282
 calculation and filtering effect, 83
to crack, 110-112
deformation, 119
Energy (cont.)

elastic, 64
fracture, 113, 238, 244-245, 294-297, 346-347
illustration, 239, 243
impact, 30, 110, 251, 252, 268, 281, 282, 289, 290, 309-310, 312-313
absorption, 223-224, 227, 228
illustration, 230-232
criterion for material selection, 333
normalization, 300
penetration depth and, 331
thickness and, table, 171
at ultimate failure, 325
velocity and, 332
with incipient damage, 260
potential, 12
propagation, 56, 57
returned and retained, 292-294
strain, 342-344
total, 39-40, 151
yield, 40, 64, 151

Energy (absorbed)-deflection traces, 149

Expoxies

glass-fiber-reinforced, 170
rigid and soft, 221, 233

Ethylene-propylene copolymer injection molded disks, 274

F

Failure

brittle, 84, 85, 109, 266-271, 274-277, 286, 310
illustration, 272
catastrophic, 311
component, 21
criteria, 19-20
illustration, 21
with different test methods, 154-155
ductile, 84, 239, 245, 266, 266-270
fiber, 223
incipiency of, 35
mode, 109, 165, 272, 306
table, 275
plane-strain, 362, 363
shear, 200
short and long-term, 290
total, 64-66
transspherulitic, 362, 366
Failure limits, impact, 33-35, 152
Falling dart impact test apparatus, 325
Falling weight testing, 39-40, 148, 263

Fatigue

constant-load, 290
damage caused by, 21
impact, 281-301
response, 4-5
Fatigue testing, 281-301
Fiber breakage, 34-35
Filament wound pipe, 197-203

Filter

antialiasing, 84
electronic variable, 285
low-pass, 88, 97, 98
illustration, 92, 100, 102
notch, 97
two-pole, 87
illustration, 91
universal for impact testing, 100
Filtering, 14-15
analog, 14, 81, 100
digital, 15, 18, 81-102
effect, 83
Finite element (FE) analysis, 73-75, 118, 123
Finite element grids, 75-77
Flaws, 314
Flex impact testing, 145, 149, 155, 162
illustration, 150
Fluorocarbon, 105
Foam
deformation, 135–136
nonuniform and uniform density of, 107
Force/deflection, 149, 164–165
Force measurement analysis, 337–350
Fourier transform approach, 81–82, 96
Fracture
behavior, 236–247
brittle, 287, 289–290, 297–298
cracking, 306
ductile, 286, 287, 297–298
energy, 238, 244–245, 292–297
illustration, 239, 243
morphology, 362
Fracture mechanics analysis, 342–349, 359
Fracture toughness, 5, 60, 66–73, 245
degree of, 62
dynamic, 78
effect of loading rate on, 351–367
testing, 353–355
transitions, 356–359, 363
Frequency domain methods, 81, 82
Frequency spectrum, 94–95, 99–100
illustration, 96, 97

G
Gardner testing, 107–108, 113–115
anvil, 148, 160, 162
apparatus, 325
1.25-in. ring, 148
standard, 39–40, 148, 157, 162
Gas bubbles, 106, 107, 113
Gas counterpressure (GCP) method, 107
Geometries, 68–74
configuration, 108
dependency in printed circuit boards, 171
illustration, 77–78
impact, 145
impact problems, 82
influence of, 176, 177
Graphite/epoxy composites, 174, 248–249, 253–260

H
Helmets, 118–119
Hole diameter (specimen), 264–265
Hydrodynamic-elastic-magneto-plastic code (HEMP), 313

I
ICI/Battenfeld (Billion) process, 107
Impact
controlling variables, 28–33, 42
damage assessment, 303
digital filtering of data, 81–102
energy, 30, 281
failure limit, 33–35
idealized histories, 82–89
low-pressure thermoplastic structural foam, 105–116
problem, model of, 90–95
puncture
illustration, 207–208
table, 209
strength, 164
toughness, 290
Impact behavior
brittle-ductile, 151, 165
of plastics and composites, 58–80
Impact characteristics, 3–4
of low-pressure single-component thermoplastic structural foam, 113
new composite materials, 248–261
in polymers, 324–334
Impact characteristics (cont.)

- testing, simulation, and interpretation of, 117-143
- Impact fatigue treatment, 325
- Impact modulus, 346-349
- Impact parameters, key, 25-26, 28, 33, 37
- Impact resistance
 - assessment of, 303, 325
 - composite ranking, 259
 - of polyether sulphone, 268, 276
 - prediction, 187-216
- Impact response of polymeric materials, 302-323
- Impact speed (see Velocity, impact)
- Impact stress states, 26-32, 36, 41, 188
 - illustration, 151
 - in impact testing, 159, 160-162
 - one and two-dimensional, 314
- Impact tester, 108, 303, 325
 - high-rate, 188-192, 215, 303, 304
 - variable-speed, evaluation of, 58-80
- Impact testing (see also Compression testing; Puncture testing)
 - analysis of force and energy measurements in, 337-350
 - of aramid-reinforced composites, 219-235
 - comparative evaluation, 152-157
 - correlation of methods, 145, 157-162, 174-177
 - data interpretation, 9-23
 - for end-use applications, 3
 - flexed-plate, 262-277
 - good, conditions for, 24, 155-157
 - high-speed, 81
 - historical review, 165-166
 - instrumented dart, 44-57
 - instrumented systems, 13
 - methodology, 2-3, 144-162
 - methodology for selecting, 24-43
 - parameters, 10-18, 169-170
 - partial, 4-5
- of polyether sulphone, 262-277
- of polymeric materials, 163-186
- program/design development, 127, 178
- rate dependency, 173-174
- rate sensitivity, 170
- repeated blows, 287-289, 325
- single-blow, 281-282, 286, 297, 300
- specification of methods, 37-40
- test applicability, 19-22, 153, 154-155
- test-specific effects, 23
- utilization of data, 18-23
- variable-rate, 163-186
- ISO/DIS 6603/1, 263, 264
- ISO Draft Specification 6603/2, 19
- Izod testing, 33, 39, 54, 59, 145
- excess-energy pendulum, 107
- extension of, 284
- inadequacy, 164
- notched, 147, 157, 159, 162
- of polyvinyl chloride, 242
- reverse notched, 147, 159
- of rubber-modified polymers, 237

K

- Kevlar, 197
 - illustration, 226
 - improved, 233-234
- Kevlar 29, 221, 227, 230, 233-234
- Kevlar 49, 173-174, 221, 227, 230

L

- Laminates
 - E glass, 193, 197
 - honeycomb-core, 220, 224-226, 233, 234
 - S glass, 193, 197
 - skin/core, 192-197
 - solid, 220
Laser-Doppler system, 338
illustration, 340
Laser-Doppler techniques, 338, 342, 349
Light beam/photodetector, 13
Linear elastic fracture mechanics (LEFM), 66, 352
Linear load-deflection behavior, 52
Linear variable displacement transducer (LVDT), 46
Load, 46, 47
ductility index and, 168
dynamic, 59, 119
failure dynamic, 78
histories, 82, 86-89, 98-99
illustration, 92
idealized, 84
inertial, 15-16
maximum, 49, 53
monotonic increase and decrease, 12
oscillations of, 50, 51-52, 57
range and time, 10-13
resolution, 12
Load cell/amplifier, 54
Load-deflection, 47, 50, 53, 56-57, 79
signals, 64-67
Load-displacement history, 83
Loading
biaxial, 44
compressive, 119
gometry, 27, 44
impact, 26-27
material behavior under, 188
rate effect, 351-367
M
Macrocracking, unstable, 50
Matrix molecular weight effects, 240-242
Melt flow rate (MFR), 178
Microprocessor system, 188, 215
Mold-filling process, 106-107
Molecular energy absorption, 26
Molecular relaxation mechanisms, 358, 366

N
Noise
characterization, 95-97
excessive, 134
generation, 82
level, 98
reducing or removing, 14, 82, 89
sources, 94
Nomex aramid structural sheet, 221
NONSAP program, 77, 123, 126
Noryl test plaque, 109
Notched specimen development, 262-277
Nylon 66, 282, 286-297
Nylon A, 285, 287-300
Nylon B, 286-294
Nylon-reinforced reaction injection molding (RRIM), 52-53
Nyquist criteria, 84
O
Oscillations
amplitude, 16, 120
creation of, 82
excessive, 134
harmonic, 16-18
of load, 50-52, 57
source and frequency, 17
Oscilloscope, 122, 285
digital, 249-251, 325-326
external, 60, 62
P
Parametric material evaluation, 18-19
Pendulum impact apparatus, 164, 338-339
Pendulum testing, 145, 147, 159
Penetration depths, 302-323
Penetration testing, 251-252
Photodetector triggers, 14
Plastics
 automotive applications, 44-57, 162
damage, 52
deformation, 49
fatigue response, 4-5
foaming, 106
impact behavior analysis, 58-80
industry, 59
instability, 52
Polyacetal, 282, 290
Polycarbonate, 59, 60, 62-80
 behavior, 263
 load range, 12
 thickness, 177
Polycarbonate film, 282
Polyether sulphone (PES), 262-277
Polyethylene
 high-density (HDPE), 60, 64-80, 97-101, 303, 313, 338, 344
 computer simulation, 313-317
 impact responses, 304-313, 318-322
 illustration, 305, 316
 table, 308
low-density (LDPE), 59
low-pressure high-density (HDPE), 108
terephthalate (PET), 282
ultrahigh-molecular-weight, 282
Polymers, 58 (see also Crystalline materials)
dynamic impact loading, 351
impact characteristics for incipient crack formation, 324-334
impact fatigue, 281-301
impact response with depth of penetration, 302-323
rubber-modified, 236-247
 semicrystalline, 359
structure, 188
thermoplastic, 59
toughness, 281
ultimate strength, 188
viscoelastic, 120-121, 163-186
Polymethyl methacrylate, 177, 351-367
Polypropylene
 drop testing, 136
 failure, 154
 foam, 123-141
glass-reinforced, 181
Polystyrene, 98, 313
 acrylonitrile (PSAN), 237, 241
 illustration, 242
 drop testing, 136-141
 foam, 121
 high-impact (HIPS), 236-237, 282, 313-317
 illustration, 299, 305
 impact responses, 303-313, 318-322
Polystyrene plaques, 109
Polyurethane foam, 121, 123, 130, 131
 illustration, 131, 138
Polyvinyl chloride (PVC)
rubber modified, 236
 fracture behavior of, 242-245, 246
sheeting, extruded, 176
Puncture impact
 illustration, 207-208
table, 209
Puncture resistance, 203-215
Puncture road hazards, 203-204
Puncture testing, 54, 56, 108-113, 200, 203-215, 259
 illustration, 49
Ram displacement, 192, 197, 200 310-311
Ram penetration, 193, 200
Ram travel distance, 304, 309-310, 311
Reaction injection molding (RIM) material, 27, 52-53, 55-56, 154
Reinforced reaction injection-molded polyurethane (RRIM) material, 59, 64-80
Resin, 106-107, 113
carbon fiber in, 221
polyphenylene oxide-based, 109
properties, 109, 223
rigid, 233
Ringing, 17
postfailure, 94
reducing amplitude, 17-18
Road testing, 203-215
Rubber, 206
effect on ductile-brittle transition, 240

S
Scanning electron microscopy, 355, 364-366
Service failure criteria, 19-20
Servohydraulic machines, 56, 325
Sheet molding compound (SMC), 27, 59, 62-80, 303
SMC-R65 material, 50, 55-56
SPE ANTEC Conference, 177-178
Specimen shape, 145
Stiffness, 35, 90-91, 124
bending, 259
compression, 124-127
flexural, 313, 322
properties of cushioning material, 119
Strain energy release rate, 342-344
Stress
concentrators, 314
distribution, 271-274
high-tensile-yield, 262
impact, 188
tensile, 314
Stress intensity factor, 282
critical, 344-346, 349
Stress intensity factors (SIFs), 60
calculation/computations, 74-75, 77-78
Stress states (see Impact stress states)
Stress whitening, 310-311, 314, 328

T
Tearing, 27, 43, 53, 54
Temperature effects, 236-247, 253-259, 329-332
Tensile tester, high-speed, 147
Tensile testing, 145, 147-148, 157, 162
Tensile toughness, 148, 233
illustration, 231
Tension
biaxial, 27-32, 43, 160
normal shear, 43
uniaxial, 27, 43
illustration, 31
table, 28
Test fixture design, 145
Test frequency effect, 291
table, 292
Test rate effects, 236-247
Thermoplastics, 175, 305 (see also specific types)
impact test data, 178, 183
structural foam (TSF), 105-116
Thickness
dependency, 170-173
effects, 107, 180, 291-292
illustration, 318-319
end-use, 57
after impact, 306
increasing, 327
skin, 108, 113
strength and, 176-177
of tire, 204-205
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-point bend testing</td>
<td>245</td>
</tr>
<tr>
<td>Through-penetration testing</td>
<td>251-252</td>
</tr>
<tr>
<td>Time history</td>
<td>89-92</td>
</tr>
<tr>
<td>illustration</td>
<td>98-99</td>
</tr>
<tr>
<td>load range and</td>
<td>10-13</td>
</tr>
<tr>
<td>Time-velocity data</td>
<td>342, 344</td>
</tr>
<tr>
<td>Tire</td>
<td></td>
</tr>
<tr>
<td>construction variables</td>
<td>209-215</td>
</tr>
<tr>
<td>materials</td>
<td>206</td>
</tr>
<tr>
<td>puncture resistance</td>
<td>203-215</td>
</tr>
<tr>
<td>Titanium alloys</td>
<td>166</td>
</tr>
<tr>
<td>Torso-head-helmet impactor system</td>
<td>118</td>
</tr>
<tr>
<td>Toughness</td>
<td>292, 344</td>
</tr>
<tr>
<td>Toughness transitions</td>
<td>356-359,363-366</td>
</tr>
<tr>
<td>Triggering method</td>
<td>13-14</td>
</tr>
<tr>
<td>Tup</td>
<td></td>
</tr>
<tr>
<td>acceleration</td>
<td>165</td>
</tr>
<tr>
<td>natural frequencies</td>
<td>17</td>
</tr>
<tr>
<td>velocity</td>
<td>15</td>
</tr>
<tr>
<td>vibrations</td>
<td>14</td>
</tr>
<tr>
<td>Ultrasonic C-scan</td>
<td>259, 260</td>
</tr>
<tr>
<td>Uniaxial tensile testing</td>
<td>52</td>
</tr>
<tr>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>USM expanding mold method</td>
<td>107</td>
</tr>
<tr>
<td>Velocity</td>
<td>120</td>
</tr>
<tr>
<td>in finite element simulation</td>
<td>126-127</td>
</tr>
<tr>
<td>impact</td>
<td>16-17, 45, 46, 132, 134, 180-185, 309, 315-317, 322, 332, 333</td>
</tr>
<tr>
<td>measurements</td>
<td>60-64, 338-342, 349</td>
</tr>
<tr>
<td>pendulum</td>
<td>338</td>
</tr>
<tr>
<td>illustration</td>
<td>341</td>
</tr>
<tr>
<td>testing</td>
<td>16, 60</td>
</tr>
<tr>
<td>Velocity-time data</td>
<td>342, 344</td>
</tr>
<tr>
<td>Video testing, high-speed</td>
<td>45, 54-55</td>
</tr>
<tr>
<td>Yield</td>
<td>33-34, 49, 149</td>
</tr>
<tr>
<td>behavior</td>
<td>154-155</td>
</tr>
<tr>
<td>characteristic of</td>
<td>52</td>
</tr>
<tr>
<td>deflection</td>
<td>151</td>
</tr>
<tr>
<td>energy</td>
<td>40, 64, 151</td>
</tr>
<tr>
<td>point</td>
<td>35, 56</td>
</tr>
<tr>
<td>position</td>
<td>52</td>
</tr>
<tr>
<td>response</td>
<td>42</td>
</tr>
<tr>
<td>strength</td>
<td>239</td>
</tr>
</tbody>
</table>