Subject Index

A

ABAQUS, 373
Alumina, 228
course-grained, 161
Arrhenius law, 360

B

Batdorfs theory, 390
Bending, 84, 98
configuration, 250
Bootstrap ratio techniques, 291
Bridging interactions, 161
Brittle materials, 143

C

CARES, 390
Cavities, 127
Ceramic Technology Program, 3
Competing risk, 3
Component reliability, 291
Composites
ceramic matrix, 175
continuous fiber reinforced, 207
Compression, 84
Confidence intervals, 291
Constitutive equations, 62
Continuum damage mechanics, 207, 373
Crack growth, 98, 127
slow, 309
subcritical, 161, 228, 390
Cracking, 84
Creep, 19, 127, 373
damage, 207
deflection, 84
life prediction, 207
modeling, 360
rupture, 36, 62, 207, 309
C-ring tests, 333

D

Damage, continuum, 373
Defect density, 192
Defect distributions, 280
Deformation
creep-induced, 19
high temperature, 360

E

Elemental strength concept, 175

F

Failure, delayed, 161
Failure, multiaxial, 265, 280
Failure predictions, 175
probability, 112, 333, 346
weakest link, 192
Failure properties, 112
Failure theories, 143, 280
Fatigue, cyclic, 161
Fatigue, dynamic, 228
Fatigue life prediction, 98
Fatigue parameter estimation, 390
Fatigue, static, 161
Finite element analysis, 143, 309, 333, 360
Flaw distribution, 112
Flaw strength, 175
Flexure tests, 84, 228
Fracture, 19, 127, 280
analysis methodology, 265
local risk, 346
mechanism maps, 36
mixed mode, 192
strength, 250
stresses, 228

G

Gaussian quadrature, 143
H

Heat exchanger tubes, 373

L

Likelihood ratio techniques, 291
Linear regression, 250
Loading, 98
 constant, 161
 cyclic, 19, 161
 factors, 265
 multiaxial, 346
 proof test, 390
 thermomechanical, 62

M

Machining, 3
Maps, fracture mechanisms, 36
Maximum likelihood technique, 250
Mechanical testing, 3
Modeling
 computer, stress distribution, 333
 creep, 360
 micromechanical, 207
 multiaxial, 175
 weakest link, 192
 Weibull, 112
Modulus of rupture, 127
Multiaxial fracture modes, 265
Multiaxial loading, 346
Multiaxial strength, 192
Multiaxial stress, 280

N

Neutral axis, 84

O

O-ring tests, 333

P

Plane stress approximation, 333

R

R-curve effect, 161
Reliability analysis, 228, 373, 390
Reliability behavior, 373
Risk of failure, 346
Rupture, cyclic, 112
Rupture, creep, 36, 62, 309
 life, 207
Rupture, modulus of, 127
Rupture, monotonic, 112
Rupture strength data, 390

S

Scale factors, 175
Scanning electron microscopy, 175
Silicon carbide, 309, 373
Silicon nitride, 3, 36, 62, 112
 creep, 360
 hot isostatic pressed, 127
 hot-pressed, 84, 98
 sintered, 19
 structural, 291
Statistical analysis, 112
Stiffness, 84
Strain gaging, 3
Strength data analysis, 280
Strength degradation, 228
Strength, multiaxial, 192
Strength parameters, 291
Stress allowables, 36
Stress, applied, 19
Stress averaging, Weibull, 390
Stress dependence, 207
Stress distribution, 333
Stress, multiaxial, 265
 failure theories, 280
Stress volume, 265
Structural reliability, 36
Surface wave acoustic microscopy, 127
T
Tensile creep, 19, 127
Tensile fatigue, 19, 98
Tensile strength, 3, 127
Tension, 84
Thermomechanical loading, 62
Time-temperature stress
dependence, 127
Tubers, heat exchanger, 373
Tubular components, 309, 333

W
Weakest link models, 192
fracture statistics, 265
Weibull analysis, 3, 112, 280
Weibull distribution, 175
Weibull estimators, 250
Weibull modulus, 228
Weibull statistics, 309, 373
Weibull strength parameters, 291
Weibull stress averaging method, 390
Weibull probability, 143, 346
Weibull uniaxial model, 265

Y
Yttria, 3, 360