Subject Index

A

Acidification, 299
Ammonia, 27
Autoclave testing, 239

B

Barriers
 multiple, design, 165
 natural, 115
Bedrock environment, 224
Brass, free machining, 355

C

Carbon dioxide, 268
Carbon steel, 27
Chemical process industries, 42
Chloride, 204, 299
 sodium, 340
Chromium, 367
Cladding, 239
Coincidence site lattice, 252
Concrete service life, 282
Constant extension rate testing, 355
Containers, nuclear waste, 188
 damage prediction, 143
 lifetime prediction, 126,
 165, 224
 multi-purpose, 115
 transuranic, 103
Copper, 224
Cracking
 fatigue, growth, 188
 hydrogen-induced, 126
 stress corrosion, 27, 188,
 313, 325, 340
Crevice, artificial, 313
Crevice corrosion
 susceptibility, 299
Crevice depassivation, 204
Crevice repassivation, 126,
 204, 340
Crystallographic orientation,
 252

D

Damage accumulation, 165
Deformation, residual, 252
Degradation rate, 103, 355
Distribution parameters, 3

E

Electrochemical methods, 382
 Electrochemical
 Potentiokinetic
 Reactivation, 367
 impedance spectroscopy, 42
 potential range, 325
 Electrode, rotating cylinder, 42
 Embrittlement, mercury, 355
 Engineered barrier system, 115
 Environmental definition, 3

F

Fatigue, corrosion, 188
Field simulations, 252
Fracture, unstable, 355

G

Galvanic coupling technique, 126
Gas facility, 268
Graphite-fiber wool, 313

H

Hydrology, 115
Hydrolysis, 204

I

Immersion tests, 42
Impurity segregation, 252
Intergranular corrosion, 367
Ion mass spectrometry,
 secondary, 252
L
Lifetime distribution, 313
Linear model, 65

M
Marine atmosphere, 382
Materials definition, 3
Materials selection, 165, 268
Mercury embrittlement, 355
Metamorphic rocks, 224
Microstructure, 252
Mixed Potential Model, 143
Mode and submode definition, 3
Modeling
 composite, 65
crack growth, 27
crevic, 204
deterministic, 143
exponential distribution, 313
linear, 65
mechanistic, 165
mixed potential, 143
quantitative, 299
Multipotential test, 325

N
Neural networks, artificial, 42
Nickel-base alloy, 313
Nuclear waste management, 188, 224
damage prediction, 143
high level, 115
low level, 282
storage life prediction, 126, 165

O
Oil facility, 268
Oxygen diffusion rate, 282

P
Penetration data, corrosion, 65
Pitting, 299
Plutonic rock repositories, 143
Polarization scans, 42
Power model, 65
Precipitations, intermetallic phase, 367
Probabilistic methods, 27
Propagation phenomenon, 165

Q
Quantitative method, 299

R
Radiolysis products, 143
Rate testing, constant extension, 355
Rating number, 382
Reactors
 boiling water, 313, 325
 pressurized water, 239
Rebars, 282
Repassivation, 126, 204, 340
Residual deformation, 252
Rust staining, 382

S
Screening, rapid, 325
Segregation, trace impurity, 252
Sensitization, 367
Service examinations, 103
Site lattice, coincidence, 252
Slow strain rate testing, 355
Sodium chloride, 340
Soil exposure, 103
Staining, rust, 382
Statistical distribution, 3, 65
Statistical methods, 115
Steam autoclave test, 239
Steel, 65, 103, 282
carbon, 27
stainless, 188, 204, 313, 325, 367
austenitic, 340
rust staining on, 382
Storage environment, 103
Stress corrosion cracking, 27, 188, 313, 325, 340
Sulfate, 204
Tanks, storage
 ammonia, 27
 nuclear waste, 103, 188
 damage prediction, 143
 lifetime prediction, 126, 165, 224
 multi-purpose, 115
 waste container integrity, 103
Tarps, plastic, 103
Tearing modulus, 355
Titanium
 alloy, 143
 Grade-2, 126
 Grade-12, 126
Thermal loading, 115
Tuff Repository, 165
Velocity, 268

Waste, nuclear, 224
 high level, 115, 143, 165, 188
 low level, 282
Weibull, 3
Welds, spot, 340

Yucca Mountain, 115, 188

Zircaloy-4, 239