Subject Index

A
Abnormalities, manufacturing, titanium matrix composites, 315
Acoustic emission, 278, 335, 376
Acoustic impact technique, 376
Acousto-ultrasonic techniques for nondestructive testing
adhesively bonded joints, 335
ceramic composites, 363
Adhesively bonded joints, nondestructive testing, 335
Advanced materials, fatigue crack propagation silicon nitride, 1
Aerospace applications, titanium alloy, 48
Alumina, reinforcement material for metal matrix composite, 134
Aluminum coatings for space applications, 156
Aluminum matrix, fatigue response, 32, 134
Anisotropic constitutive relations, 178
Anodized aluminum coatings, 156
ASTM standards
E 399, 109, 124(table)
E 647–88a, 2, 109
E 813, 109, 124(table)
E 1150-87, 1
Attenuation, nondestructive testing of adhesively bonded joints, 335
Axial-bending interaction, elastoplastic concrete frames, 244
Axial-torsional loading, cobalt-base superalloy, 204

B
Beryllium copper alloy, 109
Bond strength prediction, adhesively bonded joints, 335
Boron, reinforcement material for metal matrix composites, 134
Bridging, 19, 64
Bridging fibers, interface strength, 64
Bulk matrix material vs Metal matrix composites, fatigue response, 32

C
Carbon fiber reinforced composites, 255
Ceramic composites, nondestructive test evaluations, 363
Ceramics, fatigue crack propagation, 1
Cobalt base superalloy, deformation behavior, 204
Composite dynamic response, nondestructive testing of adhesively bonded joints, 335
Composite materials, production methods, 265, 301
Conductors, 109
Continuous fiber reinforcement metal matrix composites, 32
Copper beryllium alloy, 109
Copper-niobium microcomposite, 87
Cost-effective manufacturing process, 301
Crack bridging, intermetallic matrix composites, 64
Crack closure, 48
Crack growth behavior
aluminum coatings, 156
beryllium copper alloy, 109
intermetallic matrix composites, 64
metal matrix composites, 32
titanium, 48
Crack growth tests, 2, 109
Crack propagation, 1
Crack tip stress, 19
Creep analysis for notches, 230
Cryogenic testing, 109
Cu-Nb microcomposite powder metallurgy processed, 87
Cycle stress-strain response, 178
Cyclic deformation, 204
Cyclic fatigue, 19
Cyclic loading
crack propagation in silicon nitride, 1
elastoplastic concrete frames, 244
graphite epoxy composites, 301
multiaxial stress-strain creep analysis, 230

D
Damage accumulation, fatigue crack growth behavior, 48
<table>
<thead>
<tr>
<th>Damage mechanisms, fatigue behavior</th>
<th>Fatigue crack propagation</th>
</tr>
</thead>
<tbody>
<tr>
<td>acoustic impact technique, 376</td>
<td>beryllium copper alloy, 109, 132(table)</td>
</tr>
<tr>
<td>adhesively bonded joints, 335</td>
<td>metal matrix composites, 32</td>
</tr>
<tr>
<td>ceramic composites, 363</td>
<td>silicon nitride, 1, 19</td>
</tr>
<tr>
<td>Cu-Nb microcomposite, 87</td>
<td></td>
</tr>
<tr>
<td>fiber/matrix sliding, 64</td>
<td></td>
</tr>
<tr>
<td>fiber-reinforced composites, 255</td>
<td></td>
</tr>
<tr>
<td>graphite epoxy composites, 301</td>
<td></td>
</tr>
<tr>
<td>intermetallic matrix composites, 64</td>
<td></td>
</tr>
<tr>
<td>metal matrix composites, 32, 315</td>
<td></td>
</tr>
<tr>
<td>nondestructive evaluation techniques, 315, 335, 363, 376</td>
<td></td>
</tr>
<tr>
<td>orthotropic material, 178</td>
<td></td>
</tr>
<tr>
<td>polymeric matrix composite materials, 265</td>
<td></td>
</tr>
<tr>
<td>short fiber-reinforced styrene maleic anhydride, 278</td>
<td></td>
</tr>
<tr>
<td>titanium matrix composites, 315</td>
<td></td>
</tr>
<tr>
<td>Defect characterization, 376</td>
<td></td>
</tr>
<tr>
<td>Deformation behavior, cobalt-base superalloy, 204</td>
<td></td>
</tr>
<tr>
<td>Design for space station thermal control, 156</td>
<td></td>
</tr>
<tr>
<td>Dynamic response of CFRP, 255</td>
<td></td>
</tr>
</tbody>
</table>

E

Effective fatigue driving force, 64

Effective stress intensity, 48

Elastoplastic concrete frames, 244

Equivalent stress strain curve, 204

F

Failure analysis method, elastoplastic concrete frames, 244

Fatigue behavior

<table>
<thead>
<tr>
<th>adhesively bonded joints, 335</th>
<th>beryllium copper alloy, 109, 132(table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ceramic composites, 363</td>
<td>metal matrix composites, 32</td>
</tr>
<tr>
<td>Cu-Nb microcomposite, 87</td>
<td>silicon nitride, 1, 19</td>
</tr>
<tr>
<td>fiber/matrix sliding, 64</td>
<td></td>
</tr>
<tr>
<td>fiber-reinforced composites, 255</td>
<td></td>
</tr>
<tr>
<td>graphite epoxy composites, 301</td>
<td></td>
</tr>
<tr>
<td>intermetallic matrix composites, 64</td>
<td></td>
</tr>
<tr>
<td>metal matrix composites, 32</td>
<td></td>
</tr>
<tr>
<td>orthotropic material, 178</td>
<td></td>
</tr>
<tr>
<td>polymeric matrix composite materials, 265</td>
<td></td>
</tr>
<tr>
<td>pulltrusion process variables, 301</td>
<td></td>
</tr>
<tr>
<td>short fiber-reinforced styrene maleic anhydride, 278</td>
<td></td>
</tr>
</tbody>
</table>

Fatigue crack propagation

aluminum coatings, 156	beryllium copper alloy, 109, 124(table), 132(table)
aluminum matrix composite, 134	
Cu-Nb microcomposite, 87	
Frame, elastoplastic concrete, 244	
Frequency response, 255	

G

Gas turbine engines, titanium alloys, 48

Glass fiber-reinforced styrene maleic anhydride, 278

Graphite epoxy, 265, 301

Graphite fiber composite, 376

Graphite, reinforcement material for metal matrix composite, 134

H

High strength, high conductivity, Cu-Nb microcomposite, 87

High-temperature aerospace applications cobalt base superalloy, 204
Intermetallic matrix composites, 64
Titanium alloy, 48

Humidity
Effect on aluminum coatings in space station design, 156

Hysteresis energy, 278

I

In-phase loading, 204
IHPTET program (See Integrated High Performance)
Integrated High Performance Turbine Engineer Technology (IHPTET) program, U.S. Air Force, 48
Interfacial damage, 64, 255
Interfacial shear stress, 64
Intermetallic matrix composites, titanium alloy, 48, 64
Intensity factor, 19
Internal stress, 32

L

Laminates, dynamic response of CFRP, 255
Life prediction
Adhesively bonded joints, 335
Aluminum matrix composite, 134
Nondestructive testing, 335
Orthotropic material, 178
Polymeric matrix composite, 265
Short fiber reinforced styrene maleic anhydride, 278
Silicon nitride, 1
Titanium, 49
Loading conditions, 178, 204, 244
Loss factor, graphite epoxy composites, 301
Low cycle fatigue, 134, 139(table)
Low earth orbit, 134

N

Near threshold crack growth behavior, 48
Nondestructive evaluation testing
Acoustic impact technique, 376
Adhesively bonded joints, 335
Ceramic composites, 363
Graphite fiber composite, 376
Metal matrix composites, 315, 324(table), 329(table)
Notch tip stresses and strains, 230

M

Magnesium, 134
Manufacturing defects, 315
Manufacturing processes, nondestructive testing
Adhesively bonded joints, 335
Ceramic composites, 363
Manufacturing process, pultrusion, 301
Materials testing, 376
Mechanical behavior and properties
Aluminum matrix composite, 134
Beryllium copper alloy, 109, 113–117(tables), 119(table)
Carbon fiber-reinforced composites, 255
cobalt-base superalloy, 204
Intermetallic matrix composites, 67(table), 75(table)
Metal matrix composites, 32, 33–35(tables)
Orthotropic materials, 178, 189(tables)
Short glass fiber-reinforced thermoplastic materials, 278, 281(table), 283(table)
Titanium alloy, 48, 50(table)

Metal matrix composites
Aluminum, 134
Fatigue response, 32
Manufacturing abnormalities, 315
Nondestructive evaluation techniques, 315, 324(table), 329(table)
Reinforcement materials, 134
Titanium, 315
Microcomposite, 87
Modulus, fatigue loss, graphite epoxy composites, 301, 308(table)
Multiaxial fatigue damage models, 178
Multiaxial stress strain, 230
Multiaxiality, cobalt-base superalloy, 204

N

Near threshold crack growth behavior, 48
Nondestructive evaluation testing
Acoustic impact technique, 376
Adhesively bonded joints, 335
Ceramic composites, 363
Graphite fiber composite, 376
Metal matrix composites, 315, 324(table), 329(table)
Notch tip stresses and strains, 230

O

Orthotropic material, 178
Out of phase loading, 204

P

Particulate reinforcement, 134
Phase lag, 255
Polymeric matrix composite materials, 265
Powder metallurgy processed microcomposites, 87
Pultrusion process, for producing composite materials, 301

R

Real time nondestructive testing, 363
Regression, graphite epoxy composites, 301
Residual stresss, silicon nitride, 1
Response volume, graphite epoxy composites, 301
Room temperature, fatigue crack growth rates, 134

S

Scanning electron microscopy, 1
Secant modulus, 278
Shear lag model, 64
Shear stress, interfacial, 64
Short glass fiber-reinforced composite, 278
Silicon carbide, reinforcement for metal matrix composites, 134
Silicon carbide fibers, fatigue response, 32
Silicon nitride
 crack growth behavior, 19
 fatigue crack propagation, 1
Space station design, humidity effect on aluminum coatings, 156
Stiffness, as a damage analogue, 32, 255, 265
Strength prediction, adhesively bonded joints, 335
Strengthening, Cu-Nb microcomposites, 87
Stress, aluminum coatings, 156
Stress distribution, adhesively bonded joints, 335
Stress intensity
 crack growth behavior, 19, 48
 fatigue crack propagation, 1
Stress intensity range, 48
Stress shielding effect, 19
Stress strain, multiaxial, for notches, 230
Stress strain curve, cobalt-base superalloy, 204
Stress wave factor, 335
Styrene maleic anhydride, 278
Subcritical crack growth, silicon nitride, 1
Surface cracks, silicon nitride, 19
Surface film technique, 19

T

Temperature, elevated, cobalt-base superalloy, 204

Tensile behavior
 acoustic impact technique, 376
 adhesively bonded joints, 335
 ceramic composites, 363
 Cu-Nb microcomposites, 87
 graphite epoxy composites, 301
 metal matrix composites, 134, 138(table)
 polymeric matrix composite materials, 265
 pultrusion process variables, 301
 Tension compression loading, fatigue response, 32
Testing (See Nondestructive evaluation)
 Textron fiber, fatigue response, 32
 Thermal control design for space station, 156
 Thermal fatigue, 156
 Thermal stability, metal matrix composites, 32
 Thermomechanical fatigue, 315
 Thermoplastic materials, 278
 Threshold stress intensity range, titanium alloys, 48
 Through the thickness cracks
 silicon nitride, 19
 Titanium, 134
 Titanium alloy, fatigue crack growth behavior, 48
 Titanium matrix composites, 315
 Titanium matrix, fatigue response, 32
 Turbine engines, gas, titanium alloys, 48
 Tyranno fiber (Ube, Japan), 32

U

Ultrasonics, nondestructive testing
 ceramic composites, 363
 titanium matrix composites, 315

V, W, X

Variable amplitude loading, 134, 148(table)
Water exposure, effects on short fiber-reinforced styrene maleic anhydride, 278
X-ray, titanium matrix composites, 315