Subject Index

A
- Adhesive, 62
- Aerospace applications
 - high temperature, 172, 216
- Alumina, 118
 - alumina-silica, 172
- ASTM standards
 - C 1275, 15, 48, 86
 - C 1292, 15
 - C 1341, 15
 - development, 3

B
- Beam test, double cantilever, 31
- Boron nitride-containing interphase, 48, 86, 229, 306

C
- Calibration, compliance, 31
- Coating techniques, 276
- Combustor liner, high temperature, 3, 201
- Conductivity, thermal, 185
- Cracks and cracking
 - growth, 229
 - matrix, 134, 306
 - stress, matrix, 148
- Creep, 172
 - creep-rupture, 245, 290

D
- Damage, 185
 - accumulation, 306
- Debonding, 185
- Deformation, 134
 - tensile, 262
 - time-dependent, 216
- Degradation, 229, 290
 - high temperature, 118
 - modulus, 245
- Delamination toughness, 31
- Density, bulk, 86
- Double cantilever beam, 31
- Double notch compression, 15
- Durability, high temperature, 107

E
- Elastic modulus, 86
- Embrittlement, temperature, 306
- End-notched flexure, 31
- Engine, turbine, 3, 62

F
- Fatigue, 262
 - testing, 245
- Fiber bridging, 229
- Fiber creep, 262
- Fiber waviness, effect on tensile response, 148
- Finite element calculations, 185
- Fixturing, 62
- Flexural properties
 - C 1341, 15
- Flexural strength, 160
- Flexure test, 31, 86
- Fracture, 172
- Fracture properties, reinforcing fibers, 134
- Fracture stress, fiber, 148

G
- Gas turbine, 201
 - engine, 3
- Graphite/bismaleimide laminate, 160
- Gripping, 62

H
- Hoop testing, 3
- Hysteresis, 118
Interfacial bonding, 276
Interfacial conductance, 185
Interfacial shear stress, 118
Interphase, 306
boron nitride, 48, 86, 229, 306
carbon, 229, 306
fiber/matrix, 118
oxidation, 229
Notch effect model, 160
Notch strength, 172
Oxidation, 185, 290, 306
damage, 245
degradation, 229
fiber coating, 216
interphase, 229
paralinear, 201
protection, 276
Oxide/oxide, 62, 172
Paralinear oxidation, 201
Plain weave, 148
Polysilazane, 15, 48
Ring burst, 3
Rupture modeling, 134
Satin weave, 148
Scale formation, 201
Shear strength
C 1292, 15
Shear stress, 118
Silicon carbide
creep rupture, 245
damage accumulation, 306
degradation, 290
durability, 107
interface oxidation, 229
loading mode effects, 262
oxidation behavior, 201
stress rupture, 216
Silicon nitride, 210
Silicon nitrocarbide, 48
Single leg bending, 31
Steam environment, high pressure, high temperature, 201
Strain accumulation, 262
Strength predictions, 160
Stress concentration, 160
Stress-relaxation, 216
Stress, residual, 118, 148
Stress-rupture, 107, 216
Stress-strain, 306
curves, tensile, 276
Stress, time-averaged, 245
Surface roughness, 160
Sylramic, 15, 48, 86, 306

T
Temperature effects on delamination toughness, 31
Temperature embrittlement, 306
tensile behavior, 148
tensile deformation, 262
tensile loading, 148, 172
tensile properties, 134
tensile strength testing
C 1275, 15, 48, 86
Tensile stress-strain, 306
curves, 276
tensile testing, 262
tension testing, 86, 118
Thermal conductivity, 185
Thermal diffusivity, 185
Thermal expansion, 216
Thermal exposure, 118
Thermogravimetric analysis, 290
Thermomechanical properties, 134
Toughening mechanism, 276
toughness, delamination, 31
Transmission electron microscopy, 276
Transthickness tension, 62
Turbine engines, 62
Turbine, gas, 201
Tyranno-Hex, 276

U
U.S. Air Force, 172

W
Waviness, fiber, effect on tensile response, 148