Subject Index

A
Anisotropy, 19

B
Bearing capacity, 47, 172
Bottom-feed method, dry, 131
Brick-lined tunnel, 266
Building foundation
 performance, prediction, 172
Building sites, filled, 212
Bulkheads, 279

C
Cavity expansion, 248
Cement mixing method, deep, 224
Centrifuge, 224
 model test, 47
Chemical injection, deep, 266
Clay soils, 19, 32, 73, 185, 248
 soft, 47
Coal waste, 116
Column/soil stress ratios, 148
Compaction
 deep, 279
 deep soil, 297
 dynamic, 199
 grouting, 234, 248
 piles, sand, 4, 32, 47
 vibratory
 marine, 279
 probe, 320
 sand pile, 32
 soil, 297
 stone columns, 62, 85, 116, 185, 212,
 technique comparison, 4
Compressibility, 297
Cone penetrometer testing, 172
Construction, compaction piles, 4
Culm, 116

D
Densification, sand, 4, 32, 248, 297, 320
Density, relative, 234
Design
 cement mix, deep, 224
 compaction technique, resonant, 297
 lateral static densification, 248
 sand compaction pile, 4, 32
 stone columns, 62, 116, 131, 148, 172, 185
Direct transmission seismic testing, 234
Displacement, vibro, 131
Dynamic compaction, 199

E
Earthquakes, 224, 234, 297
Embankment stability, 19

F
Field tests
 dynamic compaction, 199, 297
 grouting, 266
 seismic testing, 234
 stone columns, 4
 load tests, 62, 73, 101, 116, 148, 172, 185, 212
 performance, 131, 199
 underwater compaction, 279
 vibratory compaction, 320
Footing, spread, 101
Foundations
 design, 62
 performance, prediction, 172
 settlement, 185
 stabilization, 199

G
Glacial soil, granular, 101
Grouting, 224
 compaction, 234, 248
 specifications, 266
 tests, 266

Poison's ratio, 234
Pore water pressure, 224
Preaugering technique, 131
Probes, vibratory, 297, 320

I
Injection, deep chemical, 266
Instrumentation, stone column testing, 85, 101

J
Japan, use of compaction piles in, 4, 32

L
Laboratory mixing test, 224
Landfill/strip mine, dynamic compaction, 199
Lateral static densification, 248
Liquefaction, 4, 32, 224, 297, 320
 mitigation, 172
 potential, 248
Load, inclined, 47
Load tests, 32, 62, 73, 148, 212
 plate, 101, 116, 172
 vertical, 185

M
Marine applications, vibratory deep compaction, 279
Mechatronic consolidation system, 32
Microshearing, 248
Model tests, centrifuge, 47

N
Numerical analysis, 224

P
Penetration tests, 172, 199, 297, 279
Penetrometer testing, cone, 172
Permeability, 297
Plate load test, 101, 116

Sand
 alluvial, 224
 columns, 19
 compaction piles, 4, 32, 47
 densification, 4, 32, 248, 297, 320
 Shirasu, 224
 silty, 101, 185
 vibration, 4, 32
Seismic tests, 172
 crosshole, 234
downhole, 234
 uphole, 234
Settlement, land, 199, 212, 248, 266, 297, 320
culm processing area, 116
footing level, 101
foundation, 172, 185
long-term, 199
marine, 279
reclaimed land, 4
Shear deformation, 224
Shear, micro, 248
Shear strength, 19
Shirasu, 224
Silty sand, 101
Sites, building, filled, 212
Slide correction, 131
Slope stabilization, 131
Soil
 borings, 116
clayey, 19, 32, 47, 73, 185, 248
 coherence, 266
 cohesionless
 compaction piles, 4
 cohesive, 62, 73
 compaction piles, 4
 granular, 297
 granular glacial, 101
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-cohesive</td>
<td>62</td>
</tr>
<tr>
<td>peat</td>
<td>185</td>
</tr>
<tr>
<td>sandy</td>
<td>19, 32, 47, 101, 185, 248, 297, 320</td>
</tr>
<tr>
<td>Shirasu</td>
<td>224</td>
</tr>
<tr>
<td>silt</td>
<td>101, 185</td>
</tr>
<tr>
<td>stabilization</td>
<td>4, 73</td>
</tr>
<tr>
<td>Soil stress ratios</td>
<td>148</td>
</tr>
<tr>
<td>Spread footing</td>
<td>101</td>
</tr>
<tr>
<td>Stability analysis</td>
<td>19, 47</td>
</tr>
<tr>
<td>Stabilization</td>
<td>4, 73, 199</td>
</tr>
<tr>
<td>deep chemical</td>
<td>266</td>
</tr>
<tr>
<td>slope</td>
<td>131</td>
</tr>
<tr>
<td>Stone columns</td>
<td>19, 101, 199</td>
</tr>
<tr>
<td>British developments</td>
<td>85, 212</td>
</tr>
<tr>
<td>coal waste deposits</td>
<td>116</td>
</tr>
<tr>
<td>design and installation</td>
<td>4, 131, 172</td>
</tr>
<tr>
<td>instrumentation</td>
<td>85, 131</td>
</tr>
<tr>
<td>load tests</td>
<td>62, 73, 148, 172, 185, 212</td>
</tr>
<tr>
<td>performance specifications</td>
<td>73</td>
</tr>
<tr>
<td>plate load tests</td>
<td>101, 116</td>
</tr>
<tr>
<td>slope stabilization</td>
<td>131</td>
</tr>
<tr>
<td>testing</td>
<td>85</td>
</tr>
<tr>
<td>Strip mine/landfill, dynamic</td>
<td>compaction, 199</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Tunneling, soft-ground</td>
<td>266</td>
</tr>
<tr>
<td>Tunnels, highway</td>
<td>101</td>
</tr>
<tr>
<td>brick-lined</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Underwater fill</td>
<td>279</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vertical load tests</td>
<td>185</td>
</tr>
<tr>
<td>Vibrating casing pipe</td>
<td>32</td>
</tr>
<tr>
<td>Vibratory compaction</td>
<td>4, 32, 320</td>
</tr>
<tr>
<td>marine</td>
<td>279</td>
</tr>
<tr>
<td>soil, 297</td>
<td></td>
</tr>
<tr>
<td>with stone columns</td>
<td>62, 85, 116, 185, 212</td>
</tr>
<tr>
<td>Vibratory probes</td>
<td>297, 320</td>
</tr>
<tr>
<td>Vibro-composer</td>
<td>4</td>
</tr>
<tr>
<td>Vibro displacement</td>
<td>131</td>
</tr>
<tr>
<td>Vibroflotation</td>
<td>212, 279</td>
</tr>
<tr>
<td>Vibro replacement</td>
<td>62, 73, 85, 131, 172, 185</td>
</tr>
</tbody>
</table>