Subject Index

A

a-c impedance, 103, 143
Aluminum conduit corrosion, 42–43
ASTM Standards
 C 33-86, 39
 C 150-86, 39
 C 876-80, 54, 143
 C 876-87, 103
Atmospheric corrosion, 1

B

Blast furnace slags
 influence on corrosion rate, 17
Bridge decks, 1, 86

C

Calcium nitrite, 38
Carbonation, 1
Cathodic protection
 steel reinforcement in concrete construction, 52
Cement type
 blended cements, 17
 chemical composition, 18
 chloride concentrations, 3, 7, 8
Chloride concentration, 86
Chloride intrusion
 in reinforced concrete structures, 38
 steel in concrete, 174
Chloride ions
 in reinforced concrete, 38
 in steel, 1, 4
Chloride
 diffusion, 3
 in concrete, 3–5, 86, 157
Concrete
 blast furnace slags, 17
 composition, 68
 corrosion, 38, 66, 86, 118, 157
corrosion measurement, 134, 143, 180
electrical resistivity, 180
electrochemical impedance measurement, 118
mix designs, 40
polarization resistance versus macrocell corrosion, 38
properties, 40
reinforcement corrosion, 3
reinforcing bars, 103
steel in concrete, 174
steel reinforcement corrosion, 86, 118, 157
Corrosion behavior
 after repair, 52
Corrosion intensity, 29
Corrosion monitoring, 103
Corrosion of metals
 test methods, 1, 4, 5, 40–41
Corrosion of steel in concrete, 86, 118, 157, 174
Corrosion potentials, 157
Corrosion rates
 bridge decks, 86, 101
 chloride concentration, 3, 38
 electrochemical impedance measurement, 118
 influence of blast furnace slags, 17
 measurement, 86, 134, 137–139
 rebar durability measurement, 29
 reinforced concrete, 52, 86
 reinforcing bars, monitoring, 103
 repaired reinforced concrete, 52
 residual service life prediction, 29
 steel in concrete, 86, 143
Corrosion, reinforcement, 3
Corrosion testing, 38
Cracks, 174
Critical chloride concentration, 3
Culverts, 66
Curing time effect, 9
Currents, 66

191
Damage levels
reinforced concrete, 31
Deicing salts, 174
Deterioration levels
residual service life prediction, 29
Double counter electrode, 104

Electrochemical impedance measurement
corrosion of concrete reinforcement, 118
reinforcing bars in concrete, 103
repaired reinforced concrete, 52
Electrostatic resistivity of concrete, 143
Evaporation, 66

Finite element method, 103
Failure, structural
caused by chloride ions, 38
Fly ash cements, 12
Furnace slags (see Blast furnace slags)

Galvanic corrosion
reinforced concrete, 52
steel in concrete, 143
Galvanostatic pulse technique, 143

Half-cells, 157

Impedance measurement, corrosion
concrete reinforcement, 118
concrete slabs, 66
reinforcing bars, 103
steel in concrete, 143
Inhibitors, 38
IR error, 86

Macrocell corrosion, 38, 134, 143
Marine environments, 1, 174
Masonry, 174
Mathematical model
electrochemical impedance measurement, 118
Metals corrosion
test methods, 1
Microsilica cements, 12
Mortar, 174

Numerical simulation, 107
On-site corrosion rate, 134
Oxygen concentration, 86

Parking decks, 1
Passivity, 3, 174
pH
effect on corrosion of steel in concrete, 86, 174
Piling, 66
Polarization resistance
compared to macrocell corrosion, 38
steel in concrete rate of corrosion, 86
steel reinforcing bars in concrete, 104, 134
Pourbaix diagrams, 174
Portland cement
chloride in concrete, 5, 11
blended with blast furnace slags, 17
Potential mapping survey, 143
Potential measurement
corrosion, 157
Potential pH (Pourbaix) diagrams, 174
Potential wheel, 160–164
Protective scales, 174

Rebar, 66
Rebar analysis, 111
Rebar durability
corrosion rate measurements, 29, 134, 157
electrochemical impedance measurement, 118
galvanostatic pulse measurement, 143
Reinforced concrete
corrosion rates in repaired specimens, 52
deterioration detection, 157
Reinforcement corrosion, 3, 38
Reinforcing bars, 38, 66
Reinforcing steel in concrete, 86, 143
Repair methods
reinforced concrete structures, 52
Residual service life prediction, 29

Salt contamination
in repaired reinforced concrete, 52
Slags, blast furnace
 blended with portland cement, 17
 chemical composition, 18
Steel rebar corrosion, 43
Steel reinforced concrete, 1, 17
Steels
 corrosion, 3, 29, 118, 134, 174
 electrochemical impedance measurement, 118
 imbedded chlorides, 3
 imbedded in portland cement mortars, 24
 in concrete, 17, 86, 103, 134, 143

 polarization resistance versus macrocell corrosion, 38
 potential wheel design, 157
 rebar, 66, 103
 reinforcing bars, 103
 residual service life prediction, 29
Storage conditions
 influence on corrosion of steel, 17

W

Water/cement ratios, 3, 5, 10