Subject Index

A
Abandonment—monitoring wells, 99, 102–107
Air lift, 86–89(figs)
Air rotary, 61
Aquifer testing, 62–63(table), 64–75
Aquifers
 karst monitoring system design, 276–279
 monitoring wells, 98–107
Aromatic contaminants, 266–271
Augurs, 10–11, 61

B
Backwashing, 84–85
Bailer test, 134(fig), 241, 242(table)
Becker rig, 62
Benzene
 in situ analysis, 268–269
 sorption, 111, 112(fig)

C
Cable tool drilling, 61
Cancer risk concentrations, 248(table)
Capillary pressure, 28
Carbonate rocks in karst terranes, 275–304
Center sample recovery, 62
Center stem recovery, 62
Chemical characteristics
 organic contaminants, 110(table)
Cleanup—hazardous wastes, 247–255
Compliance, 247–248
Conductive probes, 180
Constant-head test, 129–130
Contaminant concentrations
 aromatics detection, 268, 269(table)
 remedial pumping, 249–251(figs)

D
Darcian velocity, 26
Data loggers, 181–184
Data presentation, 193–209
Decommissioning—monitoring wells (See Abandonment—monitoring wells)
Dissolved metals
 preservation and filtration, 238–246
Drilling
 methods, 60–61(table)
 tools, 61
 in urban areas, 55–56
 water requirements, 59
 wells, 59–60
Dual-wall reverse circulation, 62
Dust
 in drilling, 58
Dye traces, 292–293

E
Electric well probes, 180
Electronic data loggers, 165–177
Ethylbenzene
 in situ analysis, 268–269
 sorption, 113(fig)

F
Falling-head test, 126
Field permeability tests, 140–146
Field tests—statistics, 256–265
Filter packs
design, 64–75, 76–81
Filtration of total versus dissolved metals,
238–246
Fine-grained sediments, 152–164
Fluid pressure measurements, 221–223,
233
Fluid sampling, 223–226, 234–235
Fluid-scanning switches, 47
Fluorescence, laser-induced, 270–271
Fluvial materials
hydraulic conductivity, 138–151
Formation, 64–75
Free-drainage samplers, 21–22(fig)

Gas chromatography, 266–271
Gasoline, 25–33
Glacial deposits
hydraulic conductivity, 138–151
Grain size distribution, 73
Graphical presentation, 193–200(figs), 201
Ground water chemistry, 226
Ground water cleanup feasibility, 250–252
Ground water field tests, 256–265(fig)
Ground water levels—fluctuations, 165–
177
Ground water monitoring
fiber optics, 266–271
fluctuations—test methods, 166–177
hydraulic test methods, 125–137, 138–
151
immiscible contaminants, 25–33
in karst terranes, 275–304
leakage tracing, 292–295
monitoring well development, 82–90
monitoring wells, maintenance, 98–107
multiple level systems, 213–237
preservation and filtration of total
versus dissolved metals, 238–246
pumping, 247–248
sampling fluids, 7–24
sampling procedures, 239
sampling wells, 108–122
sediment-free sampling, 76–81
surge block, 91–97
tensiometers, 34–51
urban environments, 55–63
water level data, 193–209

Waterloo system, 213–237
well screens and filter packs, 64–75
Westbay system, 213–237

Hazardous wastes in karst terranes, 275–
304
Heating oil, 25–33
Hydraulic conductivity
fine-grained sediments, 152–164
glacial and fluvial materials, 138–145
measurement, 213–237
multiple-level monitoring systems, 213–
237
single-well test methods, 125–137
test results, 230(fig)
testing, 226–229(figs)
Hydraulic test, 134(fig), 135–136
Hydrographs—water level data, 201–208

Immiscible contaminants, 25–33
Immiscible fluids, 26–27
In situ measurements, 266–271
Infiltration, 34–51
Installation and operation
multiple-level monitoring systems, 213–
237
tensiometers, 48–49
Instrumentation
comparison, Westbay and Waterloo,
231–232(table)
design, 217–221, 233
tensiometers, 34–51

Karst terranes—ground water monitoring,
275–304
Kurtosis, 68(fig)

Laboratory tests, 140–146
Laser-induced fluorescence, 270–271
Leakage, 292
Limestone in karst terranes, 275–304
Lysimeters, 13, 28–30(fig)
M

Maintenance—monitoring wells, 99–100
Manometer-type tensiometers, 42(table), 43
Measurement theory, 36–37, 39–41
Mercury manometer, 43
Mineralogy—filter packs, 72
Moisture content, 34–51
Moisture tension—measurement, 34–51
Monitor wells
design, 76–78, 120–121(fig)
development objectives, 82
maintenance and rehabilitation, 98–107
rehabilitation, 91–97
surging, 91–97
in urban environments, 55–63
Monitoring programs
costs, 235–236
ground water sampling wells, 108–122
immiscible contaminants, 25–33
sampling fluids, 7–24
strategy—karst terranes, 296–300
urban well drilling, 55–63
well construction and design, 65–72, 76–81, 82–90
well screens and filter packs, 64–75
Mud
in drilling, 58
Mud rotary, 61
Multiple level monitoring systems, 213–237

N

Nitric acid preservative, 240–241
Noise
in drilling operations, 58

O

Organic contaminants
compounds and chemical characteristics, 110(table)
monitoring wells, 108–122

P

Particle distribution, 68–70(figs)
Particle size, 146–149
Perched ground-water sampling, 24
Percussion method
dual-wall reverse circulation drilling, 62
Permeability, 27(fig), 138–151, 152–164
Permits, 56–59
Phoenix metropolitan area
contaminated ground water monitoring, 55
Planning, 55
Plugging—monitoring wells, 106–107
Pollutants in karst terranes, 280–287
Pore liquid extraction, 8, 12, 17, 21
Porous suction samplers, 13, 17–18(table)
Preassembled double-walled screen, 79–80
Preservation of total versus dissolved metals, 238–246
Pressure measurement equipment
multiple-level monitoring systems, 213–237
tensiometers, 34–51
Pressure transducer, 42(table), 45–47
Pumping, 248–252
Pumping tests, 126–127, 138–151

Q

Quality control—monitoring systems, 235

R

RCRA (See Resource conservation and recovery act)
Redevelopment—wells, 98–107
Rehabilitation—monitoring wells, 99, 100–102
Resource conservation and recovery act, 1–3, 7
Richards apparatus, 34–51
Right-of-way
urban area drilling, 57, 59
Roundness, and effective size, 70–72

S

Safety—public, 59
Sampling, 8–16, 25–33, 120, 286, 288–289(figs)
Sampling equipment
augurs, 8–11(figs)
lysimeters, 13
Sampling equipment—continued
metal contamination, 241
porous suction samplers, 13
screen design, 76–81
vacuum-pressure samplers, 14–16(figs)
Sampling wells, 108–122
Sand pack, 79–80
SARA (See Superfund Amendments and
Reauthorization Act of 1986)
Screen design, 78–79
Secondary filter, 64, 72(fig), 73–74
Sediment-free sampling, 76–81
Sediment study, 242–243
Single-head test, 128
Single-well pump tests, 130–133
Site-access
for drilling in urban areas, 56–57
Site descriptions, two monitoring systems,
214–216(figs)
Slot-type well screens, 66(fig), 67
Slug test methods, 162(table)
Slug tests, 127–129, 152–161(figs)
Soil core sampling, 7–24
equipment, 8
Soil lysimeters, 13
Soil-moisture tension measurement, 49
Solids sampling, 12
Sorption
benzene, 111, 112(fig), 120–121
ethylbenzene, 113(fig)
m-xylene, o-xylene, p-xylene, 114–
115(figs), 120–122
testing, 116–117(tables)
toluene, 113(fig)
uptake, 118–119(figs)
Sphericity, 70–71
Springs in karst terranes
ground water monitoring, 275–304
Statistical discrimination tests, 256–
265
Statistics—ground water, 147–255
Suction samplers, 13, 20–21
Superfund amendments and
reauthorization act of 1986 (Public
law 99–499)
provisions, 247–249
Surge block, 91–97
Surging, 85–86
Tabular presentation
water level data, 193–199(figs)
Tensiometers, 28–30(fig), 34–51
Termination pumping, 247–255
Test methods
hydraulic conductivity, 140–146
monitoring wells, 127–135
Testing, 55–63
Toluene
in situ analysis, 268–269
sorption, 113(fig)
Total metals
preservation and filtration, 238–246
Tracing leakage, 292–294
Transducers, 181–184
Underground waste disposal, 34–51
Uniformity coefficient, 67–68
Unsaturated flow, 34–51
Urban areas
contaminated ground water, 55–56
drilling problems, 56–58
Utilities
urban drilling problems, 57–58
Vacuum gage tensiometers, 42(table), 43
Vacuum-pressure samplers, 14
Vadose zone
contaminant monitoring, 25–33
monitoring methods, 7–24
Water
in drilling, 59
well design, 64–75, 76–81
Water flow conditions, 165–166
Water jetting, 89(fig), 90
Water level data, 193–209
Water level fluctuations, 184–185, 186–
188(figs)
Water level indicators, 180–181
Water level studies
fluctuations, 172–173, 174–175(tables)
test methods, 176–177, 178–192
Waterloo system, 217, 218(fig), 219–225
Water quality—karst terranes, 275–304
Well development, 82–90
Well maintenance and rehabilitation, 98–107
Well screens
design, 65–67, 74
slot type, 66

Wells—drilling, 59–60
Westbay system, 218(fig), 219–221, 225–226

Xylenes (BTEX)
in situ analysis, 268–269