Subject Index

A

Acceleration
 drop height, multidirectional, 257
 helmet impact testing, 244, 248-249
Accelerometer, 270
Adolescent players, physique differences in, 90-93
Aging of equipment, 151-152
Amateur hockey
 blade servicing, 135
 body-checking, 84-103
 eye and face injuries, 52-54
 injury rates, 15-21
 Pee-Wee player body structure, 90-93
 Quebec Sports Safety Board, 64-65
Amateur Hockey Association of the United States (AHAUS), 35-36
Anthropometric test dummy (ATD), 72-75
ASTM Specifications
 F 513-77: 55-57
 F 513-86: 47, 52-53
 F 737-81: 130
 F 737-86: 124, 129-130, 135
 F 1045-87: 197, 262-273
 sponsored by ASTM Subcommittee F08.15, 195-197
Attitudes and mentality
 body-checking, 85-90, 92-97
 face mask use, 55-56
 health care costs and hockey ethics, 58-62
 injury rates and, 39-40
 toward protective equipment, 230-232
Audits of protective equipment, 219
Axial compressive loading, 71-82

B

Body-checking
 Canadian rule changes, 84-85
 injury rates and, 97-100
 national survey, Canada, 100-103
 penalty increases and, 92-97
 rule changes, 84-85

Boot construction and blade fit, 135
Brain injury
 impact testing and, 242-243

C

Calculated risk, 9-10
Catastrophic injury rates, 25, 27
CCM blade, 124
Certification of protective equipment, 213, 216
Cervical element loading, 73, 76-79
Cervical spine fractures, 71-82
Cervical spine tolerance, 77-78
Checking, rule changes, 41-42
Chin strap
 mouth guard combined with, 17-18
 tests, 273
College hockey injury rates, 20-23
Compression-moulded plastic helmets, 170-172
Compulsory use of protective equipment, 230-232
Computer simulation
 helmet impact testing, 240-241, 243-247
 performance specification, 270-272
Consent, risk assumption in hockey, 46
Consumer protection
 plastic-metal skate blades, 130-135
 review of protective equipment, 211
Cooperall protective girdle, 176, 178
Cradle-type helmets, 224-227
Cruciate ligament injury, 105

D

Dental injury rates, 18, 20
Developed force, helmet impact testing, 244, 248-249
Disconfirmation concept in epidemiology, 12-13
Displacement, helmet impact testing, 244, 248-249
Dorsal-plantar flexion displacement curve, 144, 146
Drop height testing
apparatus, 254–261
impact testing, 272–273
Dynamic failure loads, cervical spine injuries, 78–79

Economic gain, versus hockey safety, 60–62
Edge durability on skate blade, 134, 135–139
Elbow pad, 175–176
End and corner board modification, 188, 192–194
Energy absorption in protective equipment, 152
Epidemiology
centralization of data, 12–13
disconfirmation concept, 12–13
eye injuries, 29–31
injury rates, 9–13
Equipment (see also Protective equipment)
ASTM/HECC certification, 52–53
changes in, 11–12
Ethics
hockey health care, 58–62
injury protection, 230–232
External force resistance, knee braces, 109, 112–113
Eye guards, 150–151
Eye injuries
Canadian equipment standards, 207, 212, 216
Canadian statistics, 216
epidemiology, 29–31
reducing risk, 52–54
unprotected players, 235–236

Face injury, reducing risk, 52–54
Face mask
ASTM/HECC certification, 53
Canadian standards, 207–219
capabilities and limitations, 150–153
costs and ethics, 58–62
eye injuries, 30–31
full face and visor type models, 235–239
health care costs and ethics, 58–62
historical development, 228–230
rule changes, 35–36
Swedish standards, 228–230
use guidelines, 55–57
Fiberglass materials, helmet development, 224–225
Fighting and injury rates, 22–23
Foam padding for helmets, 183
Fractures, body-checking and, 99–100
Free-fall impact testing, 262–265
Full face guards
versus half face shield, 55–57
versus visor type, 235–239

Gadd severity index (GSI)
helmet impact testing, 242–244
recording apparatus, 270–272
Goal pads, 164–168
Goaltender face guards, 228–230
Goniometric studies, knee braces, 105–111

Half face shield, 55–57
Headform
helmet testing, 250, 252, 263, 266–267
standards, 212–217
Head injury criterion (HIC), 243
Head protection (helmet and face guard combined), 228–230
Health care costs of hockey, 58–62
Heat treatment of metal blades, 125
Heel safety guard, 120–121
Helmet
ASTM/HECC certification, 53
Canadian standards, 207–219
compulsory use guidelines, 220–227
cradle liners, 224–227
fiberglass materials, 224–225
historical development, 164, 170–175
impact testing, 240–261
liability, 48
limitations and capabilities, 150–153
one-piece shell prototype, 221–222
padding material, 81–82, 226–227
plastic materials for, 223–224
product liability, 48
rims and edges of, 152–153
stiffness properties, 81–82
Swedish standards, 221–224
three-piece shell prototype, 221–222
tool costs of, 175
High-sticking penalties, 95–97
Hockey pants, 175–177
Hockey sticks
 failure sites, 160
 geometry and dynamics, 157–162
 performance evaluation, 157–162
 safety factors, 154–163
Horizontal force depletion, 142–143
"Hostile agression" penalties, 95–97
Human factors and protective equipment, 152

Ice behavior and spinal injuries, 81–82
(see also Attitudes; Violence)
Ice reaction force vector, 142–143
ICM blade, 124, 126
Impact testing
 cervical spine injuries, 73–77, 80–82
 free-fall, 262–265
 full face and visor face guards, 235–239
 helmet safety, 240–261
 ice surface characteristics, 266, 268
 market effect, 256, 258, 260
 testing sites, 266
 velocity measurement, 266, 269
Information management for hockey
 safety, 67
Infraction guidelines, 41–42
Injection-molded plastic helmet, 170, 172
Injury rates
 amateur hockey, 15–21
 body-checking and, 97–100
 catastrophic injuries, 25, 27
 college hockey, 20–24, 26
 eye injuries, 29–31
 hockey sticks, 156–157
 insurance claims, 233–234
 knee braces, 105–109
 professional hockey, 23–25
 rule changes, 37–42
 statistical methods for, 232–234
Inspection of protective equipment, 213, 216
"Instrumental" penalties, 95–97
Instrumentation for impact testing, 251, 253–254
Insurance against injury, 232–233
International Organization for Standard-
 ization (ISO)
 head protection standards, 232
 protective equipment, 213
Intervention model for hockey safety, 65

K
Kinematic analysis of joint stress, 141–149
Knee braces
 frequency of use and injury prevention, 105
 goniometric study, 105–108
 knee injury, 104–114

L
Last clear chance doctrine, 45–46
Liability laws
 hockey safety and ethics, 61–62
 risk assumption, 44–50

M
Mechanical test rig
 calibration and repeatability, 254–255
 helmet impact testing, 250–253
Mechanism of injury
 hockey sticks, 156–162
 neck injuries, 71–82
 spine injuries, 72–75
Metal skate blades, heat treatment, 125
Molded-in skate blade, 120–121, 124
Mouth guard
 development of, 16–18, 17–18
 improper use of, 53–54

N
National Athletic Injury Reporting System
 (NAIRS), 22–24
National Athletic Injury Surveillance
 System, 11
National Collegiate Athletic Association, 26
Natural ice surfaces, 202–203
Neck injuries
 helmet rims and edges, 152–153
 mechanism of, 71–82
 “Norm violation” penalties, 95–97
Nose contact tests, face masks, 237–238
Numonics analyzer, used in face mask development, 236–237
Nylite skate blade, 132–133

Officiating
 body-checking penalties, 92–97
 injury rates and, 37–42
Ongoing surveillance system
 epidemiology, 10–12
 injury rates, 14–27
Opposing players’ liability, 48–50

Peak shear, compression and moment of force, 77–79
Pee-Wee players
 body-checking by, 84–103
 morphological biomechanical differences, 90–93, 96
Penalties
 average number per game, 97
 trends in, 94–97
Perfecta blade, 124
Performance tests, knee braces, 109, 112
Plastic-metal skate blades
 design analyses, 124–125
 marketing techniques, 130–135
 test results, 128
Plastic padding material in helmets, 224, 226–227
Plastic skate blades, 120–121
Plastics
 helmet development, 223–224
 liner padding for helmets, 224, 226–227
 skate blades, 125
Player speed, cinematographic analysis, 158
Playing surface (see also Rink design)
 area size, 188
 evolution, 187–200
Pneumatic air cannon, 178, 180
Polymer plastic skate blades, 125
Polyvinyl chloride helmets, 223–224
Post-assembled skate blade
 design problems, 127–129
 examples of, 122, 124
Post shrinkage in skate blades, 124
Premises liability, risk assumption in hockey, 46–47
Products liability, risk assumption in hockey, 47–48
Professional hockey
 blade servicing, 135
 injury rates, 23–24
 Quebec Sports Safety Board, 65
Prolite tubular blade, 122
Pronation-supination displacement curve, 144–145, 147
Protective braces, knee injury, 104–114
Protective equipment
 aging of, 151–152
 Canadian standards, 207–219
 as catalyst for violence, 55–57
 defective, 16–18
 fear of injury and, 40
 historical perspective, 164–183
 knee injury brace, 104–114
 limitations and capabilities, 150–153
 products liability, 47–48
 testing, certification, and inspection, 213, 216
Public review of equipment standards, 211
Puck velocity
 cinematographic analysis, 159
 face mask development and, 236–239
 pneumatic air cannon, 178

Quadriplegic injuries. (see also Spinal cord injuries)
 hockey versus football, 10–11
 Quebec Sports Safety Board, 63–68

Research in hockey safety, 66–67
Rink design, 187–200
 American versus European dimensions, 188–192
 ends and corners modification, 188, 192–194
enlargement, 188, 192–193
goal location, 192–194
natural and seminatural facilities, 202–204
standards, 195–200
Risk assumption
eye and face injuries, in amateur hockey, 52–54
liability, 44–51
Risk reduction, eye and face injuries, 52–54
Roughing penalties, 95–97
Rule changes
injury rates, 37–42
injury surveillance, 11–12
safety as a factor, 35–36
Safety
versus economic gain, 60–62
versus victory, 39–40
Safety guard requirements, skate blades, 133
Seminatural ice surface, 203–204
Severity indices for helmet impact testing, 243–244, 247
Sharpening equipment for skate blades, 135
Shooting speeds of players, face mask testing, 239
Shoulder injuries
protective equipment development, 176, 179
rate declines, 18
Shoulder pads, 176, 179
Skate blades
design problems, 125–127
development, 117–120
dorsal and plantar flexion, 146, 148
diameter of blades, 123
fit to boot, 135
heel safety guard, 120–121
injury data, 124–126
kinematic analysis, 141–149
post-assembled design, 127–129
postural analysis, 141
radiographic analysis, 141
safety factors, 117–119
support of standards, 135–139
test equipment, 131–132
tubular, 120
Tuuk blade, 122
Skates, historical development, 164, 169–170
Slap shot
hockey sticks, 160–161
standing and skating shots, 156
Slashing penalties, 95–97
SLM blade
design problems, 124, 126–127
hardness and wear table, 139
“Spearing posture” and hockey injuries, 10–11
Spectator injury, 50
Spinal cord injury
hockey versus football, 10
increase of, 25, 27
mechanisms and prevention, 71–82
rule changes and officiating, 41
Standards
Canadian standards, 207–219
eye injuries, 29–31
for protective equipment, 208–211, 232
rink design, 194–200
skate blade safety, 135, 139
Swedish standards development, 220–234
Statistics on injuries, 232–234
Stickwork, rule changes, 41–42
Subtalar joint
kinematic analysis, 141–149
supination and pronation, 146–149
Surface characteristics
natural and seminatural facilities, 202–204
skate blade testing, 136–137
Talocrural joint
dorsal and plantar flexion, 146, 148
kinematic analysis, 141–149
Taping modifications to hockey sticks, 154–156
Temperature change, blade stresses and strains, 124
Test equipment
drop height testing, 264–271
protective equipment testing, 213, 216
skate blades, 130–132
Throat guards
 cut resistance test, 230
 development of, 230–231
 for goaltenders, 53
Trade-offs of protective equipment, 150–153
Tripping penalties, 95–97
Truth in advertising, 130–135
Tubular skate blade, 120, 122
Tuuk blade
 design problems, 127–129
 hardness and wear table, 139
 marketing methods, 132, 134
 safety factors, 122, 124
Velocity measurement, helmet impact testing, 266, 269–270
Victory versus safety in hockey, 39–40
Video camera, safety analysis, 178, 181–182
Violence in hockey, promoted by protective equipment, 55–57
Visor type face masks, 235–239
Warmth factor of equipment, 164
Warmth as factor in protective equipment, 164
Wayne State curve for concussion tolerance, 242
Whiplash effect, helmet design and, 221–222
Wrist shots
 hockey sticks and, 160, 162
 standing and skating shots, 156
Zamboni machine, 136–137