Subject Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging, physical, effects at elevated temperatures on viscoelastic creep</td>
<td>7</td>
</tr>
<tr>
<td>Aircraft materials</td>
<td></td>
</tr>
<tr>
<td>- heat damage</td>
<td>37</td>
</tr>
<tr>
<td>- honeycomb sandwich panels</td>
<td>139</td>
</tr>
<tr>
<td>Axial compression, carbon fiber/PEEK composite tubes</td>
<td>182</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch-to-batch variability, regression analysis</td>
<td>358</td>
</tr>
<tr>
<td>Bimaterial interfaces, mixed-mode fatigue delamination criterion</td>
<td>371</td>
</tr>
<tr>
<td>Bond strength, skin/flange interface</td>
<td>105</td>
</tr>
<tr>
<td>Braid angle</td>
<td>201</td>
</tr>
<tr>
<td>Braids, through-the-thickness tensile strength</td>
<td>218</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon epoxy, textile composites</td>
<td>218</td>
</tr>
<tr>
<td>Carbon polyether etherketone</td>
<td>182</td>
</tr>
<tr>
<td>Ceramic fibers testing, metal matrix composites under compression</td>
<td>278</td>
</tr>
<tr>
<td>Co-curing, skin/flange interface</td>
<td>105</td>
</tr>
<tr>
<td>Composite end-notched flexure specimens, stacking sequence effect on delamination</td>
<td>393</td>
</tr>
<tr>
<td>Composite materials</td>
<td></td>
</tr>
<tr>
<td>- advanced polymer matrix, nonlinear behavior</td>
<td>295</td>
</tr>
<tr>
<td>- carbon fiber/PEEK composite tubes</td>
<td>182</td>
</tr>
<tr>
<td>- design allowables</td>
<td>358</td>
</tr>
<tr>
<td>- effects of physical aging at elevated temperatures on viscoelasticity</td>
<td>7</td>
</tr>
<tr>
<td>- environmental stress cracking</td>
<td>56</td>
</tr>
<tr>
<td>- extension-twist-coupled laminates</td>
<td>340</td>
</tr>
<tr>
<td>- fiber-matrix interphase, effect on long-term behavior</td>
<td>69</td>
</tr>
<tr>
<td>- heat damage</td>
<td>37</td>
</tr>
<tr>
<td>- hydrothermal-aged fiber-reinforced plastics</td>
<td>88</td>
</tr>
<tr>
<td>- laminated, Mode III delamination fracture testing</td>
<td>166</td>
</tr>
<tr>
<td>- metal matrix</td>
<td>264, 278</td>
</tr>
<tr>
<td>- mixed-mode fatigue delamination</td>
<td>371</td>
</tr>
<tr>
<td>- preform architecture effect</td>
<td>201</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage, progressive, metal matrix composites</td>
<td>264</td>
</tr>
<tr>
<td>Damage mechanics</td>
<td></td>
</tr>
<tr>
<td>- fiber-matrix interphase, effect on long-term behavior</td>
<td>69</td>
</tr>
<tr>
<td>- hydrothermal-aged fiber-reinforced plastics</td>
<td>88</td>
</tr>
<tr>
<td>- data correlation, unidirectional composites</td>
<td>320</td>
</tr>
<tr>
<td>Debonding</td>
<td></td>
</tr>
<tr>
<td>- hydrothermal-aged fiber-reinforced plastics</td>
<td>88</td>
</tr>
<tr>
<td>- metal matrix composites under compression</td>
<td>278</td>
</tr>
<tr>
<td>Deformation, metal matrix composites</td>
<td>264</td>
</tr>
<tr>
<td>Delamination</td>
<td></td>
</tr>
<tr>
<td>- mixed-mode fatigue</td>
<td>371</td>
</tr>
<tr>
<td>- Mode III delamination fracture testing</td>
<td>166</td>
</tr>
<tr>
<td>- stacking sequence effect</td>
<td>393</td>
</tr>
</tbody>
</table>
textile composites, 218
Design, extension-twist-coupled
laminates, 340
Design allowables, from regression
models, 358

E
Edge crack torsion, Mode III delamination
fracture testing, 166
Elastic behavior, composite sandwich
beams with syntactic foam cores, 125
Elasticity, advanced polymer matrix
composites, 295
Elastic modulus, hydrothermal-aged fiber-
reinforced plastics, 88
Elastic properties, woven and braided
fabric-reinforced composites, 239
Elastic tailoring, extension-twist-coupled
laminates, 340
End-notched flexure specimens, stacking
sequence, effect on delamination, 393
Environmental stress cracking, polymeric
composites, 56
Extension-twist-coupled laminates, 340

F
Fabric-reinforced composites, 239
Failure modes
composite sandwich beams with
syntactic foam cores, 125
fiber-matrix interphase, 69
localized, honeycomb sandwich panels, 139
metal matrix composites, 264
skin/flange interface, 105
Fatigue, fiber-matrix interphase, 69
Fiber architecture, carbon fiber/PEEK
composite tubes, 182
Fiber cracking, distributed, metal matrix
composites, 264
Fiber-reinforced plastics
hydrothermal-aged, damage mechanics, 88
randomly oriented, 88
Finite element analysis
hydrothermal-aged fiber-reinforced
plastics, 88
mixed-mode delamination, 371
skin/flange interface, 105
Fire damage, graphite/epoxy composites, 37
Flexure test, environmental stress
cracking, 56
Four-point bending test, skin/flange
interface, 105
Fracture, stacking sequence effect, 393
Fracture toughness
Mode III delamination, 166
stacking sequence effect, 393

G
Glass/epoxy composites, 320
Graphite/epoxy composites, 320
fiber-matrix interphase, effect on long-
term behavior, 69
heat damage, 37
stacking sequence effect on
delamination, 393

H
Hardness measurements, graphite/epoxy
composites, 37
Heat damage, graphite/epoxy composites,
37
Honeycomb sandwich panels, localized
failure modes, 139
Hot water immersion, fiber-reinforced
plastics, 88

I
Impact testing, carbon fiber/PEEK
composite tubes, 182
Indentation test, localized failure modes,
honeycomb sandwich panels, 139
Inelastic deformation, metal matrix
composites, under compression, 278

L
Laminated composites
extension-twist-coupled, 340
Mode III delamination fracture testing,
166
triaxially braided, textile composite
materials, 201
SUBJECT INDEX

M
Metal matrix composites
 in-phase thermomechanical fatigue, 264
 under compression, 278
Micromechanics analysis
 advanced polymer matrix composites, nonlinear behavior, 295
 woven and braided fabric-reinforced composites, 239
Microscopy, heat damage in graphite/epoxy composites, 37
Mixed-mode analysis, fatigue delamination, 371
Modulus, preform architecture effect, 201
Moiré interferometry, textile composites, 218

N
Nondestructive inspection, heat damage in graphite/epoxy composites, 37

O
Off-axis testing, advanced polymer matrix composites, 295

P
Panel construction, honeycomb, 139
Physical aging, effects at elevated temperatures on viscoelastic creep, 7
Plain weave, 239
Plasticity
 advanced polymer matrix composites, 295
 metal matrix composites under compression, 278
Poisson's ratio, preform architecture effect, 201
Polyether etherketone, 182
Polymeric composites
 effects of physical aging at elevated temperatures on viscoelasticity, 7
 environmental stress cracking, 56
Polymer-matrix composites
 heat damage, 37
 nonlinear behavior, 295

Q
Quasi-static testing, carbon fiber/PEEK composite tubes, 182

R
Ratchetting, 264
RECIPE, 358
Regression analysis, design allowables, 358
Residual stresses, environmental stress cracking, 56

S
Satin weave, 239
SCS-6 fiber, 278
Secondary bonding, skin/flange interface, 105
Shear behavior
 effects of physical aging at elevated temperatures, 7
 preform architecture effect, 201
Shear deformation theory, 166
Short-beam shear test, unidirectional composites, 320
Sigma fiber, 278
Skin/flange interface, debonding failures, 105
Solubility parameter, environmental stress cracking, 56
Solvent effects, environmental stress cracking, 56
Specific energy absorption, carbon fiber/PEEK composite tubes, 182
Stacking sequence, effect on delamination toughness and growth behavior, 393
Static testing, carbon fiber/PEEK composite tubes, 182
Stiffness, woven and braided fabric-reinforced composites, 239
Strain energy release rate
 mixed-mode delamination, 371
 Mode III delamination fracture testing, 166
 stacking sequence effect, 393
Strength
 composite sandwich beams with syntactic foam cores, 125
 preform architecture effect, 201
Stress cracking, environmental, polymeric composites, 56
Surface treatment, fiber-matrix interphase, 69
Syntactic foam cores, composite sandwich beams, 125
Temperature, advanced polymer matrix composites, nonlinear behavior, 295
Tension, preform architecture effect, 201
Testing advanced polymer matrix composites, 295
carbon fiber/PEEK composite tubes, 182
composite sandwich beams with syntactic foam cores, 125
debonding failures, 105
design allowables, 358
effects of physical aging at elevated temperatures, 7
environmental stress cracking, 56
extension-twist-coupled laminates, 340
heat damage in graphite/epoxy composites, 37
hydrothermal-aged fiber-reinforced plastics, 88
localized failure modes, honeycomb sandwich panels, 139
metal matrix composites, 264
mixed-mode fatigue delamination, 371
Mode III delamination fracture, 166
preform architecture effect, 201
regression models, 358
stacking sequence effect on delamination, 393
through-the-thickness tensile strength, 218
unidirectional composites, 320
woven and braided fabric-reinforced composites, 239
TEXCAD, 239
Textile composites reinforced, preform architecture effect, 201
through-the-thickness tensile strength, 218
woven and braided fabric-reinforced, 239
Thermal properties, woven and braided fabric-reinforced composites, 239
Thermomechanical fatigue, in-phase, 264
Thermoplastic composites, carbon fiber-reinforced, environmental stress cracking, 56
Three-point bending test environmental stress cracking, 56
skin/flange interface, 105
Through-the-thickness tensile strength, 218
Tolerance limits, design allowables, 358
Torsional stiffness, Mode III delamination fracture testing, 166
Transverse shear failure, unidirectional composites, 320
Triaxial braid, 239
preform architecture effect, 201
Tubes, carbon fiber/PEEK, 182
Ultrasonic inspection heat damage in graphite/epoxy composites, 37
Unidirectional composites metal matrix, 278
short-beam shear test, 320
Viscoelasticity, effects of physical aging at elevated temperatures, 7
Weaves, through-the-thickness tensile strength, 218
Yarn architecture, 239
content, 201
size and spacing, 201