Index

A

AASHTO Accreditation Program, 54
AASHTO M148, 469
AASHTO M171, 469
AASHTO M240, 513
AASHTO M302, 513
AASHTO Materials Reference Laboratory, 53
AASHTO R18, 52
AASHTO T199, 62
AASHTO T259, 167, 246
AASHTO T260, 170, 311
AASHTO T277, 246
AASHTO T318, 64, 535
AASHTO TP 164, 247
AASHTO TP 64, 250
Abrasion, 184
Abrasion resistance, 184–192
application of test methods, 191
ASTM C 418, 187–188, 190–192
ASTM C 779, 187–192
ASTM C 944, 190
ASTM C 1138, 190–192
compressive strength and, 185–186
cement types, 185–186
curing and, 187
exposure procedures and, 186–187
lightweight aggregate concrete, 558
mixture proportioning and, 185
quality of aggregates and, 184–185
roller-compact concrete, 600
surface treatment and, 187
Absolute volume method, 346
Absorption
cross section, radiation shielding, 573
lightweight aggregates, 551–552
measurement, accuracy, 353–354
tests, 244, 358
water, aggregates, 351–352
Accelerated curing, 141–149, 471
apparatus, 142–143
autogenous curing method, 143–144
cement chemistry effect, 146
experimental program, 141–142
high temperature and pressure
method, 146–147
maturity method, 149–152
modified boiling method, 143–144
results, 142–144
test
precision, 145–146
procedure significance, 144–145
warm water method, 143
Accelerating admixtures, 485
Acceptable quality level, 22
Acceptance plans, 22–23
Acceptance testing, aggregates, 17–18
ACI 116R, 59–60, 184, 467, 595, 637
ACI 121.3R-91, 484
ACI 121.4R-93, 484
ACI 201.2R, 262
ACI 207.5R, 599
ACI-209R-92, 202
ACI 211.1, 65, 84, 621
ACI 211.2, 84, 339, 599, 621
ACI 211.3R-91, 484
ACI 211.4R-93, 484
ACI 213, 554, 556
ACI 214, 19–20, 28, 63, 80, 82
ACI 216, 275
ACI 228, 82, 137
ACI 228.1R, 319, 324, 328
ACI 233R, 513
ACI 234R, 219
ACI 301, 535
ACI 302.1R-04, 184
ACI 302.1R-04, 184
ACI 304R, 65, 592
ACI 304.2R-96, 622
ACI 306R, 543
ACI 308R, 83, 467, 470, 472
ACI 308R-G, 471
ACI 309.1R, 59
ACI 315, 19–20, 51, 261–262, 544,
555–556, 620
ACI 363, 201
ACI 503.1, 627
ACI 503.4, 627
ACI 506R, 616–617, 619, 622
ACI 506.1R-98, 618
ACI 506.2, 617, 622
ACI 506.3R-96, 623
ACI 544R, 587
ACI 805–51, 616–617
ACI E4-04, 484
ACI SP 191, 208
Acid attack, 263–265
Acoustic shielding properties, 302
Activity index
hydraulic cements, 437–438
pozzolan, 504
slag, 514
Additives, content analysis in hardened
concrete, 311
Adhesive materials, epoxy resins,
626–628
Adiabatic temperature rise, 45–46
Admixtures
abrasion resistance and, 185
alkali-silica reactivity, 407–408
chemical composition, 457
content analysis in hardened
concrete, 311
definitions, 495
drying shrinkage and, 218
lightweight aggregate concrete, 553,
625
polymer-modified concrete and
mortar, 608
self-consolidating concrete, 639
shotcrete, 620
see also Air-entraining admixtures;
Chemical admixtures
Aged concrete, petrographic
examination, 210
Aggregates
abrasion resistance and, 184–185
absorption measurement, accuracy,
353–354
acceptance testing, 17–18
alkali-carbonate rock reactivity, 410
ASTM standards, 366
batching and measuring materials,
539
bleeding and, 114–115
bulk density, 348–349
characteristics, thermal conductivity
and, 227–228
course degradation, 366–367
grading, 339
Aggregates (continued)
 polymer-modified concrete and
mortar, 608
 with potentially expansive rock, 422
 preplaced aggregate concrete, 592
 proportions in hardened concrete, 383–384
 size and flexural strength, 134–135
 workability and, 65
 coatings, 343, 362–363
 coefficient of thermal expansion, 426–427
 compatibility with slag, 526
 compressive strength at high
 temperature, 279
 consistency, 12–13
 constituents, alkali reactivity, 384
 content analysis in hardened
 concrete, 311
 definition, 5
 deleterious substances, 360–362
 density, effect, 303
 dry rodded, 348
 elastic properties, 371
 to enhance radiation shielding
 attributes, 573–574
 fine
 air entrainment and, 478
 cellular concrete, 562
 grading, 339–340
 manufactured, 340
 pavement wear and, 373
 polymer-modified concrete and
mortar, 608
 preplaced aggregate concrete, 592
 proportions in hardened concrete, 383–384
 fineness modulus, 337–338
 fire resistance and, 277
 freeze-thaw tests, 369
 frictional properties, 372–373
 frost resistance, 290
 grading, 337–340
 hardness, 371–372
 high-density, preplaced aggregate
concrete, 592–593
 high-strength, 365
 innocuous, 404–406
 reducing field samples to testing size, 411
 reactive, 404–406
 air entrainment, factors influencing in
fresh concrete, 476–480
 air-entraining admixtures, 291, 474–481
volumetric method, 76–77
 pressure versus
 gravimetric, 76
 microscopic, 75
 roller-compact concrete, 537–538
 sequence of material addition and,
 479
 supplementary cementitious materi-
als and, 505
 test, 62
 test result interpretation, 300
 fine
 air contents, 288–304
 air-entrained concretes, 73
 air-entraining admixtures, 291, 474–481
 grading effect, 340
 workability and, 65–66
 Air-free unit weight test, 61
 Air voids
determination, 480–481
 dispersion and spacing, 293–294
 entrained, purposely, 239
 freeze-thaw damage and, 289–290
 gradation, 291–292
 ice formation, 14
 large, arbitrary deletion, 298
 shape, 292
 size and distribution, 476
 measurement, 292–293
 spacing factor, 293–294, 475
 Air-void system
 achieving dispersion and small bub-
ble spacing, 290
 calculation errors, 298
 effective, 290
 freeze-thaw durability, 476
 geometry evaluation, 294–299
 image analysis techniques, 298–299
 linear transverse method, 295–296
 microscopic analysis, 294
 modified point-conduct method, 296
 precision and bias, 296–297
 test methods, 294–296
 variability and uncertainty, 297–298
 origin and geometric characteristics, 290–292

Alkali-reactive dolomite, 384, 418–419
Alkali-aggregate reactivity, 108
Alkali-aggregate reactions
Alkali-aggregate reactivity, 108
Alkali-carbonate rock reactivity, 410–422
ASTM standards, 410–411
chemical and mineralogical composition, 415
c ompared to alkali-silica reactivity, 413
c oncrete microbars, 421
c oncrete distress prism expansion test, 419–420
distress manifestations, 411–413
expansive dedolomitization reaction, 411
field service record, 419
mechanism of reaction and expansion, 417
petrographic evaluation, 413–415
potential, determination by chemical composition, 421
 quarry sampling, 421–422
 rock cylinder expansion test, 420–421
types, 411
using coarse aggregate with potentially expansive rock, 422
 Alkali-reactive dolomite, 384, 418–419
Alkali silica gel, 401–402
Alkali-silica reactivity, 401–408
 admixtures, 407–408
aggregate constituents, 384
c ompared to alkali-carbonate rock reactivity, 413
controlling, 406–408
by admixtures, 487–488
fly ash and pozzolan, 505–506
g ravel and sand, 387
 hydraulic cements, 447–448
identifying potentially reactive aggregate, 404–406
limiting cement alkali level, 407
mechanism of reactions and distress, 402–404
mitigation, slag effect, 520
moisture availability and environmental effects, 404
safe reactions, 402
symptoms, 401–403
Alkali sulfates, portland cement, 460
Alkali test method, 501–502
Aluminum, embedded, 175–177
Ambient conditions, effects on curing, 470–471
American Association for Laboratory Accreditation, 53–54
ANSI A118.4, 614
ANSI A118.6, 614
Anti-washout admixtures, 488
ASI 342, 244
ASTM A 185, 620
ASTM A 497, 620
ASTM A 615, 620
ASTM A 616, 620
ASTM A 706, 620
ASTM A 767, 620
ASTM A 820, 578
ASTM C 25, 459
ASTM C 29, 348, 350
grading, 337–340
shape, 340–342
surface texture, 342–343
ASTM C 39, 46–47, 53, 61, 63, 80, 128–129, 131–132, 196, 544
ASTM C 40, 26, 28
ASTM C 42, 127–128, 131–132, 327, 622
ASTM C 67, 600
ASTM C 70, 60, 253
ASTM C 78, 63, 80, 133–135, 196, 279
ASTM C 85, 310
ASTM C 88, 257, 355–357, 360, 363, 390
ASTM C 91, 53, 635
ASTM C 94, 19, 60–61, 63–64, 81, 441, 462, 533–545, 619, 622
aggregates, 539
batching plant, 539–540
cementitious materials, 538–539
chemical admixtures, 539
compressive strength testing, 543–544
control of water addition, 542–543
failure to meet strength requirements, 544
mixing operations, 540–542
mixing water, 539
sampling, 543
ASTM C 109, 32, 36, 46, 437, 444, 457, 514
ASTM C 114, 311, 451, 457–459, 500
ASTM C 115, 292, 436–438
ASTM C 117, 53, 343, 380, 614
ASTM C 123, 359, 361
ASTM C 125, 5, 59, 65, 292, 339, 383, 390, 392, 467, 474, 495, 512, 616–617
ASTM C 127, 53, 84, 349–353, 358, 551
ASTM C 128, 53, 84, 349–353, 358, 551
ASTM C 131, 184–185, 359, 362, 366–368
ASTM C 136, 53, 337, 380
ASTM C 138, 53, 62, 77–78, 84, 289, 299, 301, 480, 534, 543, 554, 581
ASTM C 142, 359, 361, 379, 394
ASTM C 143, 40, 59, 61, 66–67, 74, 81, 84, 554
ASTM C 144, 562, 635
chemical requirements of portland cement, 453–455
ASTM C 151, 219, 221, 437, 442, 444
ASTM C 156, 467–469, 471
ASTM C 157, 221–222, 420, 437, 439, 442, 587
ASTM C 171, 620, 622
ASTM C 172, 19, 53, 74, 82, 299, 554, 579, 581
ASTM C 173, 53, 62, 76, 84, 480, 553–554, 581, 598
ASTM C 177, 227, 280, 430, 564
ASTM C 183, 18–19, 26
ASTM C 185, 437, 447, 478
ASTM C 186, 45, 48, 253, 437, 441–442, 457
ASTM C 187, 44, 437, 439
ASTM C 188, 436–438
ASTM C 190, 444
ASTM C 191, 43, 88, 437, 441–440, 469
ASTM C 192, 80–81, 84–85, 127–128, 159
ASTM C 204, 292, 436–438
ASTM C 206, 503
ASTM C 207, 635
ASTM C 214, 450
ASTM C 215, 46, 155, 157, 200, 315–316, 318–319
ASTM C 219, 5, 474
ASTM C 227, 179, 212, 395, 404–405, 437, 439, 444, 447, 457
limitations, 405
ASTM C 231, 62, 75, 77, 84, 299, 476, 480, 537, 553, 581, 598
ASTM C 232, 115, 119–121
ASTM C 233, 481
ASTM C 234, 107
ASTM C 235, 361
ASTM C 236, 280
ASTM C 243, 119–120
ASTM C 260, 19, 157–158, 474, 480–481, 620, 639
ASTM C 265, 446, 448
ASTM C 266, 43, 88, 437, 440–442
ASTM C 267, 265
ASTM C 1365, 459
ASTM C 1383, 200, 320
ASTM C 1385, 617, 621
ASTM C 1398, 617, 620, 623
ASTM C 1399, 579, 584, 586–587
ASTM C 1402, 625
ASTM C 1404, 625
ASTM C 1435, 81, 84, 603
ASTM C 1436, 617, 619, 621, 623
ASTM C 1437, 437, 439
ASTM C 1438, 608, 615, 620
ASTM C 1439, 608
ASTM C 1451, 19, 27, 30, 36
ASTM C 1452, 568
ASTM C 1453, 167
ASTM C 1480, 617, 619, 621, 623
ASTM C 1543, 246, 250
ASTM C 1550, 584, 587, 589, 617–618, 623
ASTM C 1556, 47, 168, 246, 250
ASTM C 1558, 244, 250
ASTM C 1567, 514, 520
ASTM C 1581, 204, 221–222
ASTM C 1583, 628
ASTM C 1585, 168, 244, 250
ASTM C 1602, 462–463
ASTM C 1603, 463, 537
ASTM C 1604, 617, 622
ASTM D 75, 17, 380, 411
ASTM D 448, 337
ASTM D 4748, 322
ASTM D 4788, 321
ASTM D 4791, 340–343
ASTM D 4944, 60
ASTM D 4971, 39
ASTM D 5882, 320
ASTM D 6087, 322
ASTM D 6607, 27
ASTM D 6928, 366, 369
ASTM E 6, 195–196, 201
ASTM E 11, 337
ASTM E 96, 243, 250, 469
ASTM E 105, 20
ASTM E 119, 274–275, 283, 558, 566
ASTM E 122, 20, 25
ASTM E 141, 20
ASTM E 177, 211
ASTM E 288, 428
ASTM E 289, 428
ASTM E 303, 373
ASTM E 329, 52
ASTM E 350, 459
ASTM E 660, 366, 373
ASTM E 707, 366
ASTM E 994, 52
ASTM E 1085, 514
ASTM E 1187, 52
ASTM E 1301, 52
ASTM E 1323, 52
ASTM E 1550, 52
ASTM E 1738, 52
ASTM E 2159, 52
ASTM E 2226, 275
ASTM F 1869, 243, 250
ASTM F 2170, 244, 250
ASTM G 40, 184
Aerosol, 7
Atom, model, 570
Attrition test, aggregates, 368–370
Autogenous shrinkage, 7
Autogenous volume changes, 216
B
Backscattered electron SEM, 39–40
Ball-bearing abrasion test machine, 189–190
Ball penetration test, 67
Basic water content, 12
Batching
roller-compacted concrete, 601
self-consolidating concrete, 641
sequence of material addition, air content and, 479
shotcrete, 621–622
Batching plant, ASTM C 94, 539–540
Bearing strips, splitting tensile strength and, 135
Beneficiation, petrographic evaluation and, 379
Bias, 296–297
Chemical analysis of hydraulic cement, 458
Statements, acceptance testing, 26–27
Sulfate soundness test, 356–357
Binders, shotcrete, 619
Bituminous coatings, 628–630
Bituminous materials, contamination of recycled concrete, 396
Blaine fineness, 39
Blaine test, 438–439
Blasting, 239
Capacity, 101–103
Controlling, 118–119
Duration of, 101–102
Effects on hardened concrete, 106
Blisters, 111
Durability, 107–108
Mortar flaking, 109
paste-aggregate bond, 106–107
paste-steel bond, 107
Scaling, 108–109
Strength and density, 106
Surface appearance, 111–112
Surface determination, 109–111
Effects on plastic concrete, 102–106
Placing and finishing, 106
Plastic shrinkage, 104–106
Postbleeding expansion, 103–104
Thixotropic mixtures, 106
Volume change, 102–103
Water-cement ratio, 106
Fresh concrete, slag effect, 518
Fundamentals, 99–101
Increasing, 118
Ingredient effects, 112–116
Aggregate, 114–115
Cement, 112–113
Chemical admixtures, 115
Supplementary cementing materials, 113–114
Water content and water-cement ratio, 112
Mathematical models, 119, 121
Placement conditions, 116–118
Planes of weakness due to, 128
Rate, 101–102
Reducing, 116, 118
Significance, 99
Special applications, 119
Test methods, 119–121
Zones, 101–102
Bleed-reducing admixtures, 116
Bleed water, 118–119, 558
Blended cement, slag, 515
Blistering, 111, 289
Bogue calculations, 451–452
Bond, polymer-modified concrete and mortar, 609–611
Bond breakers, new concrete surfaces, 471
Bonded capping, 129–130
Bonding materials, organic, 625–626
Brickwork, contamination of recycled concrete, 397
Brines, 265–266
Brucite, 418
BS 812, 369, 373
BS 1881, 244
Bulk density, aggregates, 348–349, 549–550
Bulk modulus, high temperature and, 280
C
Calcium chloride in admixtures, 485
Bleeding and, 116
effect on galvanic current, 176–177
Calcium hydroxide crystals, 13
Hydration product, 254
Calcium hydroxide (continued)
involved in leaching or mineral deposition, 255
sulfate resistance and, 260
Calcium nitrite, permeability and, 169
Calcium oxide
analysis, 310
expansion due to hydration, 219, 221
Calcium silicate hydrate, 6, 8–9
Calcium sulfate, portland cement, 459–460
Calcium sulfate reaction, 257–258
Calcium sulfoaluminates, sulfate attack
Calcium sulfate reaction, 257–258
Chemical reactions
expansion due to hydration, 219, 221
analysis in reinforcing steels, 170–171
effect on sulfate resistance, 259
ion effect, 167–168
Chemical admixtures, 484–489
accelerating, 485
acceptance testing, 19
air-entraining, 478
batching and measuring materials, 539
bleeding and, 115–116
cellular concrete, 563
cold weather, 488–489
compatibility with slag, 526
corrosion-inhibiting, 486–487
high-range water reducing, 486
hydration and, 233
hydration controlling, 489
mid-range water reducing, 486
paste strength and, 126
recycled concrete, 396
shrinkage-reducing, 488
suppression of alkalisilica reactions, 487–488
viscosity-modifying and anti-washout, 488
water-reducing and set-retarding, 484–485
workability and, 66
Chemical attack, 253–254
Chemical contamination, recycled concrete, 396
Chemical reactions
mechanisms in deterioration, 253
supply of aggressive agents, 254
Chemical resistance, 266
depth of, 243
portland-cement paste, 174
Carbonation shrinkage, 216–217
Carlson-Forbrich van conduction calorimeter, 233
Casting direction, compressive strength, 132
Casting techniques, cellular concrete, 564
Cast-in-place concrete, radiation shielding, 575
Cathodic protection, reinforcing steel, 171
Cellular concrete, 561–568
air cell introduction, 561
applications, 567
batching, mixing, and application techniques, 563–564
classification, 562
compressive strength, 565
density, 564
drying shrinkage, 566
energy absorption, 566
engineered fills, 567
fire resistance, 566
floor fills, 567
freeze-thaw resistance, 566
materials, 562–563
modulus of elasticity, 566
nailability and sawability, 567
precast elements, 567–568
proportioning, 563
quality control, 568
roof deck fills, 567
shear strength, 566
tensile strength, 565
thermal conductivity, 564–565
walkability, 566–567
water absorption, 566
workability, 564
Clay
- in alkali-carbonate rocks, 447–448
 expanded, petrographic evaluation, 394
Clay lumps, 360–361, 379
Clinker particles, 8
Clinker phases, 39, 452
Coal, 360–361

Concrete
- Compressometer, 197
- Compressive strength, 80
 - abrasion resistance and, 185–186
 cellular concrete, 565
 - recycled, embedded in new concrete, 181–182
 types, abrasion resistance and, 185–186
 volume change, 222–223
 - see also Fresh concrete; Hardened concrete
- Concrete-making materials
 - definition, 5
 - perceived relative importance of materials, 32–35
 properties and performance, 30–35
 see also Uniformity, concrete-making materials
- Concrete prism expansion test, 419–420
- Concrete rheometer, self-consolidating concrete, 643
- Consistency
 - aggregates, 12–13
 - hydraulic cements, 439–440
 - roller-compacted concrete, 602–603
 - workability and, 65
- Consolidation
 - bleeding and, 117–118
 - fresh concrete, slag effect, 517–518
 - laboratory specimens, 84
- Construction
 - roller-compacted concrete, 601–602
- Construction Materials Engineering Council, 54
- Construction Materials Reference Laboratories, 53
- Contact zone, lightweight aggregate concrete, 557–558
- Contamination
 - detection, petrographic evaluation, 379
 - recycled concrete, 396
- Continuous penetration measurement, 91–92
- Control chart, 27–28
- Copper and copper alloys, embedded, 178
- Core and pullout test, 329
- Cored specimens, 128, 130, 170
- Core testing, versus probe penetration test, 327
- Corps of Engineers method, 599
- Correlation coefficient, 23
- Corrosion
 - chloride-induced, 164–167
 - embedded asbestos, 181
 - embedded aluminum, 175
 - embedded concrete, 181–182
 - embedded copper and copper alloys, 178
 - embedded fibers, 180–181
 - embedded glass, 179
 - embedded lead, 177–178
 - embedded organic materials, 181
 - embedded plastics, 180
 - embedded steel, 181
 - embedded zinc, 178–179
 - mechanisms, 164–166
 - reinforced steel, 164–171
 - assessing severity in existing structures, 170
 - cathodic protection, 171
 - chloride ion effect, 167–168
 - chloride samples, 170–171
 - concrete cores, 170
 - damage, 166–167
 - new steels, 171
 - precautionary steps against, 168–169
 - prestressed concrete, 169–170
 - repairs to deteriorated structures, 171
 - wood, 179–180
- Corrosion-inhibiting admixtures, 486–487
- Corrosion resistance, hardened cement, slag effect, 520
- Crack damage, alkali reactivity, 411
- Cracking, 216
 - fire-damage, 283–284
 - resistance, fiber-reinforced concrete, 587–589
- Crank’s solution, 246
- CRD-C 36, 230
- CRD-C 37, 230
- CRD-C 38, 233
- CRD-C 39, 232
- CRD-C 44, 227
- CRD-C 45, 228
- CRD-C 55–92, 61
- CRD-C 124, 232
- CRD-C 148, 368
- CRD-C 300, 470
- CRD-C 302, 470
- CRD-C 401, 465
- CRD-C 621–89a, 633
- Creep, 14, 201–203, 215
 - cement paste, 10–11, 201
 - effect of specimen size, 202
 - high temperatures and, 280
 - importance, 194
 - lightweight aggregate concrete, 556–557
 - measurement in compression, 202
 - property specification and estimation, 202–203
 - significance and use, 203
 - tensile, measurement, 202
 - creep coefficient, 202–203
 - Crushing, particle shape, 341–342
 - Crushed stone, petrographic evaluation, 390–392
- CSA A23.1, 481
- CSA A23.2–14A, 419–420, 422
- CSA A23.2–23A, 369
- CSA A3001, 513
Curing
ablation resistance and, 187
accelerated, 471
ambient conditions effects, 470–471
effects on concrete properties, 470
fresh concrete, slag effect, 519
internal, 471–472, 533–554
liquid membrane-forming curing compounds, 469–470
materials for water retention, 468
needs for future work, 472–473
new concrete surfaces, 469–473
effectiveness, 467–468
paste strength and, 126
roller-compacted concrete, 602
self-consolidating concrete, 642
sheet materials, 469
specimens, 83
test methods, 468–469
Curing compounds, 19, 629
Curing meter, 472
Curing water, 465–466, 619–620
Curing
Degree of hydration, 41–43
Degree of consolidation, density, 301–302
determination, 303
fresh fiber-reinforced concrete, 581
hardened concrete, bleeding and, 106–112
hydraulic cements, 436, 446–448
in-place, roller-compacted concrete, 603
lightweight aggregate concrete, 554
measurement as cross-check to air content measurement, 77–78
significance and use, 73
paste content effect, 304
permeability, 301
preplaced aggregate concrete, 594
radiation shielding, 574
shading properties, 302
significance, 301–302
test, 62–63
typical values, 302–303
uniformity of materials, 301
voids content, 301
Deteriorated structures, repairs, 171
Diameter-aggregate size ratio, compressive strength and, 131
Diatomite, petrographic evaluation, 395
Difference two sigma limit, 23, 26
Diffusion coefficients, 11–12
Diffusivity
cement paste, 11–12
high temperatures, 280–281
virtual testing, 47
Digital recorders, 540
Dilation methods, freezing and thawing, 160–161
Dilatometry tests, fire resistance, 276
DIN 1048, 244–245
Direct tension test, 134
Discontinuity, 247–249
Dissipative particle dynamics approach, 41
Distress, due to alkali-carbonate rock reactivity, 411–412
Dolomitic carbonate rocks, petrographic evaluation, 421
Dressing-wheel abrasion test machine, 189
Drilled cores, strength testing, 127–128
Drilled-in pullout test, 329
Drying
effects, 9–10
new concrete surfaces, 472
time, 174–175
Drying shrinkage, 215, 217–219
cellular concrete, 566
hydraulic cements, 442
slag effect, 523–524
supplementary cementitious materials, 505
Dry shake hardeners, new concrete surfaces, 471
Dunagantest, 61
Durability, 14, 80
bleeding and, 107–108
fiber-reinforced concrete, 589
hydraulic cements, 446–448
improvement, 254
lightweight aggregate concrete, 557
roller-compacted concrete, 600–601
Durability factor, freezing and thawing, 157
Dynamic modulus of elasticity, 314–316
Dynamic modulus of rigidity, 315–316
E
Echo method, 319–320
Efflorescence, 254–256, 524
Elastic constants, 194–196
Elasticity, cement paste, 10–11
Elastic modulus, 11, 194–195
drying shrinkage and, 218
from ultrasonic measurements, 199–200
virtual testing, 46
Elastic properties, 196–201
aggregates, 371
elastic modulus, from ultrasonic measurements, 199–200
importance, 194
modulus of elasticity in compression, 196–198
in tension and flexure, 198–199
Poisson’s ratio, 200
property specification and estimation, 200–201
significance and use, 203
Elastic strain, 215
Electrolytic cell, 165–166
Electrical methods, time of setting, 95–96
Embedded materials, 174–182
aluminum, 175–177
asbestos, 181
cement, 181–182
copper and copper alloys, 178
fibers, 180–181
general condition, 174–175
glass, 179
glass fibers, 181
lead, 177–178
organic materials, 181
other metals, 179
plastics, 180
steel, 181
Corrosion-inhibiting admixtures, 486–487
wood, 179–180
zinc, 178–179
see also Corrosion, reinforced steel
EN 1097-1, 1996, 367
EN 1097-2, 1998, 367
EN 1097-8, 1999, 367
EN 1097-9, 1998, 367
EN 197, 222
Finisher’s foot, 90
Finishing
 abrasion resistance and, 186–187
 air content and, 289
 bleeding and, 106
 self-consolidating concrete, 642
Fire damage, investigation and repair, 284–285
Fire endurance standards, 275
Fire resistance, 274–286
 aggregate component and, 277
 cellular concrete, 566
 cement paste component and,
 276–277
 embedded steel, 277–278
 factors influencing behavior,
 275–276
 lightweight aggregate concrete, 558–559
 spalling and cracking, 283–284
 testing, 274–275
see also High temperature, 279
Flash set, 7, 440
Flexural deflection, 203
Flexural strength, 80, 134–136
Flexural strength testing, 133, 585
Flexure, modulus of elasticity, 198–199
Floor fills, cellular concrete, 567
Flowability, entrained air and, 478–479
Flow cone, 69
Flow test, 63
Flow tester, 67
Fluid grout characteristics, preplaced aggregate concrete, 593
Fluid penetration coefficient, 245
Fly ash, 7–8, 265
 avoiding alkali-silica reactivity, 407
 bleeding and, 113–114
 chemical composition, 457
 chemical requirements, 499–500
 classification, 499
 compatibility with slag, 526
 controlling alkali-silica reaction,
 505–506
 fineness, 233
 fire resistance and, 276
 history and use, 496–499
 loss on ignition, 499–500
 optional chemical requirements,
 500–503
 physical requirements, 503–505
 preplaced aggregate concrete, 591
 sampling, 18
 specification, 497–498
 sulfate resistance and, 260–261
Foam, preformed, cellular concrete, 562–563
Fogging, 468
Free moisture, in concrete, 174
Freezing and thawing
 damage, mechanism and air content,
 289–290
 dilation methods, 160–161
durability air entrainment, 73
 air-void system, 476
 slag effect, 524
lightweight aggregate concrete, 557
petrographic examination and, 212
rapid tests, 157–160
 criticism, 158
 degree of saturation, 159–160
 effect of container, 159
 use of salt water, 160
 which deterioration measure to
 use, 158
resistance to, 239
 cellular concrete, 566
 polymer-modified concrete and
 mortar, 610
 recycled concrete, 396
 roller-compacted concrete, 600–601
 scaling resistance, 161–162
 testing, 157, 358–359
see also Weathering
Fresh concrete
 air-void system, versus hardened
 concrete, 299
 determining air voids, 480
 factors influencing entrained air,
 476–480
 function of entrained air, 475–476
 rheology, 40–41
 sampling, 19–20
 slab effect on properties, 517–519
Friable particles, 360
 petrographic evaluation, 379
tests for, 361
Frictional properties, aggregates, 372–373
Frost resistance
 aggregates, 290
 air content and, 289
 entrained air, 475
Frying pan moisture test, 353
G
Galvanic current, calcium chloride and,
 176–177
Galvanized corrugated steel sheets, 178
Galvanized reinforcing steel, 169
Gas diffusion, 243
Gas flow, transport test methods,
 242–243
Gel-space ratio theory, 46
German impact test, 367
German test, 367
Gillmore test, 440
Glass
 embedded, 179
 reactive, 387
 as recycled concrete contaminant, 397
 volcanic, 395
Grab sample, 17–18
Grading, 337–340
 aggregates, 339–340, 597–598
 air entrainment and, 340
Grading (continued)
definition, 337
lightweight aggregates, 550–551
significance, 338–339
specifications, 340
test method, 337–338
Graphical recorders, 540
Gravel, petrographic evaluation, 384, 386–387
Gravimetric method, air content
measurement, 77–78
Greening, 524–526
Ground-granulated-blast-furnace slag, 311–312
Ground penetrating radar, 321–322
Gypsum
Grout consistency meter, 69
Grout
Ground-water movement, 517
Half-cell potential surveys, 170
Hard core/soft shell microstructural model, 47
Hardened cement paste, water movement, 240–241
Hardened concrete, 309–312
aggregate determination, 311
air-void system, 299–300
ASTM C 1084, 310–311
calcium oxide analysis, 310
cement type analysis, 310–311
chemical analysis, 309
density, determination, 303
determination of additives and admixtures, 311
determining air voids, 480–481
examination, 411
function of entrained air, 475–476
instrumental methods of analysis, 312
maleic acid analysis, 310
microscopic analysis of aggregates, 388
modeling degradation and service life, 47
petrographic evaluation, 310, 411
aggregates, 383–384
polymer-modified concrete and mortar, 609–613
porosity, 239
preplaced aggregate, 594
properties, 14, 46–47
proportions of coarse and fine aggregates, 383–384
sample, 310
sampling, 20
water content, determination, 311–312
see also Air content; Bleeding; Non-destructive tests; Time of setting
Hardening reactions, microstructure, 8–9
Hardness
aggregates, 371–372
mixing water, 465
Heat evolution, portland cement paste, 6–7
Heat generation, 234
Heat of hydration, 232–233, 441–442
hydraulic cements, 441–442
reduction, slag effect, 521–523
Heat release, 45–46
Heavyweight aggregate concrete, high temperatures, 285
High paste method, 599
High-range water reducer, 66, 168–169, 486
ready-mixed concrete, 537, 542
self-consolidating concrete, 639
High temperature and pressure accelerated curing method, 146–147
High temperatures
aggregate concrete, 285
behavior mechanisms, 282–283
compressive strength and, 278–279
coupled with air blast, 285–286
determining thermal properties, 280
diffusivity, 280–281
effect on creep, 280
modulus of elasticity, Poisson’s ratio, and bulk modulus, 279–280
flexural strength and, 279
mechanical properties and, 278
moisture content influence, 282–284
refractory concrete, 285
spalling and cracking, 283–284
thermal conductivity, 280–281
thermal cycling, 282
thermal volume change, 281–282
very high strength concrete, 285
see also Fire resistance Hooke’s law, 194, 196, 203
Hydrating cement pastes, isothermal calorimetry curve, 92
Hydration, 41–43
early reactions, 6–8
new concrete surfaces, 472
portland cement, 452–453
products, 254–256
volume change, 215–216, 219, 221
Hydration controlling admixtures, 489
Hydration shells, 6–8
Hydraulic activity, effect of slag, 517
Hydraulic cement, 435–448, 450–460
activity index, 437–438
air content, 446–447
alkali-silica reactivity, 447–448
blended, 456
chemical analysis methods, 457–458
consistency, 439–440
definition, 5
density, 436
durability, 446–448
fineness, 438–439
heat of hydration, 441–442
microscopic techniques, 459
optimum sulfate content, 446
performance-based specifications, 456–457
quantitative phase analysis, 459
quantitative x-ray diffraction, 459–460
sampling, 18
selective dissolution, 458
set, 440–441
strength, 444–446
sulfate reaction, 447–448
volume change, 442, 444
x-ray fluorescence, 458
see also Portland cements
Hydraulic pressure theory, 156
Hydrogen bonding, 5–6
HYMOSTRUC model, 42

H

Half-cell potential surveys, 170
Hard core/soft shell microstructural model, 47
Hardened cement paste, water movement, 240–241
Hardened concrete, 309–312
aggregate determination, 311
air-void system, 299–300
ASTM C 1084, 310–311
calcium oxide analysis, 310
cement type analysis, 310–311
chemical analysis, 309
density, determination, 303
determination of additives and admixtures, 311
determining air voids, 480–481
examination, 411
function of entrained air, 475–476
instrumental methods of analysis, 312
maleic acid analysis, 310
microscopic analysis of aggregates, 388
modeling degradation and service life, 47

I

IBB rheometer, 70
Ice formation, at frozen surfaces, 14
Image analysis techniques, air-void system, 298–299
Impact testing, fiber-reinforced concrete, 587
Impulse response method, 320
Impurities, in mixing water, 463–464
Indices of precision, 26
Industrial cinders, petrographic evaluation, 394
Infrared spectroscopy, hardened concrete, 312
Infrared-thermographic techniques, 320–321
Insoluble residue, portland cement, 454
Inspection by variables, 23
Insulating concrete, thermal conductivity, 227, 229
International Cement microscopy Association, 207
Interparticle forces, 6
Intrinsic permeability coefficient, 245
Ionic diffusion, 245–247
Ionizing electromagnetic waves, 571
Iron blast furnace, 515
Irradiation effects, 574–575
ISO 9002, 54
ISO/IEC 17025, 52, 54
Isothermal calorimetry curve, hydrating cement pastes, 92

J
J-ring, 644
JSCE-SF4, 584, 586
JSCE-SF5, 584
JSCE-SF6, 584
JSCE-SF7, 581–582

K
Kelly ball test, 67
K-slump tester, 67
Kurtosis, 23

L
Laboratory technicians certification, 543
competency, 54
Laser diffraction method, 39
Latex adhesives, organic materials, 625–626
crances, 629–630
formulating with, 607–608
modification mechanism, 606–607
permeability and, 168
types, 605–606
L-Box, 643
Leaching, 254–256
soft water and, 264
Lead, embedded, 177
Le Chatelier’s method, 221–222
Length-diameter ratio, compressive strength and, 131–132
Light elements, 571
Light microscopy, hydraulic cement, 459
Lightweight aggregate concrete, 548–559
abrasion resistance, 558
admixtures, 553
air content, 553
cellular concrete, 562
classification, 548–549
compressive strength, 555–556
contact zone, 557–558
creek, 556–557
density, 554
durability, 557
field adjustments, 554
field tests, 557
fire resistance, 558–559
high temperatures, 285
insulating, 548
modulus of elasticity, 556
petrographic evaluation, 394–395
properties, 554–557
proportioning, 552–553
resistance to alkali-aggregate reactions, 558
sampling, 554
shrinkage, 556
specifications, 559
specified density, 554–555
structural, 548
tensile strength, 556

see also Cellular concrete
Lightweight aggregates
absorption characteristics, 551–552
classification, 548–549
core, cellular concrete, 562
internal curing, 553–554
internal structure, 549
properties, 549–552
sampling, 554

Lignite, 360–361
Linear transverse method, air content, 295–296
Liquid displacement techniques, 239
Liquid membrane-forming curing compounds, 469–470
Lithium, suppressing alkali-silica reaction, 408, 487
Loading direction, compressive strength and, 132
flexural strength, 135
rate, compressive strength and, 132
splitting tensile strength and, 136
Los Angeles abrasion, 366–368
Loss on ignition
fly ash, 499–500
portland cement, 454
Low-alkali cement, 456

M
Magnesium oxide content, fly ash and natural pozzolan, 500–501
expansion due to hydration, 219, 221
portland cement, 454
Magnesium sulfate reaction, 258
Magnetic rebar locator, 170
Magnesite, 166
Maleic acid, analysis, 310
Mass concrete, heat reduction, slag effect, 521–523
Materials characterization, importance, 39–40
Mathematical models, bleeding, 119, 121
Maturity, 249
Maturity functions, 330
Maturity index, 149
Maturity method, 136, 149–152, 330–331
application, 150–151
interpretation of results, 151–152
new concrete surfaces, 472
precautions, 152
strength-maturity relationship, 150
Maximum density method, 599
Mean, arithmetic, 23
Mechanical properties, high temperature and, 278
Mercury intrusion porosimetry, 239–240
Metaalclay, avoiding alkali-silica reactivity, 408
Metallic contaminants, recycled concrete, 396–397
Metals, embedded, see Corrosion, reinforced steel; Embedded materials
Microcracking, 125–126
high temperatures and, 282
Micro-Deval test, 369–370
Micro-fillers, 285
Microscopic techniques, hydraulic cement, 459
Microstrain, 215
Microstructure hardening reactions, 8–9
mathematical modeling, 14
Micro texture, 373
Microwave oven drying, water content determination, 64
Mid-range water reducing admixtures, 486
Mill certificate, 18
Mineral admixtures definitions, 495
recycled concrete, 396
Mineral deposits, cause, 255
Minerals, to enhance radiation shielding attributes, 573
Miner’s rule, 138
Minivolumetric air meter, 62
Mixer, uniformity, 19, 61
Mixing
air entrainment and, 479
roller-compacted concrete, 601
self-consolidating concrete, 641
shotcrete, 621–622
uniformity testing, ready-mixed concrete, 542
Mixing water, 462–466
algae in, 465
bathing and measuring materials, 539
hardness, 465
impurity effect, 463–464
mixer wash, in ready-mixed concrete, 536–537
polymer-modified concrete and mortar, 608
ready-mixed concrete, 536
seawater, 464–465
shotcrete, 619–620
specification, 462–463

INDEX 657
0716 Index(647-664).ps 4/26/06 10:33 AM Page 657
Mortar
- Monitoring, continuous evaluation, 296
- Molded specimens, 81
- Moisture content, high temperature
- Moisture condition
- Moisture clog spalling, 284
- Mohr failure envelope, 137
- Modulus of elasticity
- cellular concrete, 566
- in compression, 196–198
- high temperature and, 280
- lightweight aggregate concrete, 556
- static, 197
- in tension and flexure, 198–199
- Mohr failure envelope, 137
- Moisture clog spalling, 284
- Moisture condition
- flexural strength and, 135
- specimen, compressive strength and, 132
- Moisture content, high temperature
- behavior and, 282–284
- Molded specimens, 81
- strength testing, 127
- Monitoring, continuous evaluation, 27–28

Mortar
- aggregate size requirements, 339
- bleeding capacities, 101, 103
- cement content analysis, 311
- packaged dry mixtures, 632
- polymer-modified, applications, 613
- see also Polymer-modified concrete and mortar
- Mortar bar method, 405–406
- Mortar flaking, bleeding and, 109
- MTO LS-614, 358

N
- Nailability, cellular concrete, 567
- National Voluntary Laboratory Accreditation Program, 54
- Neat-cement cellular concrete, 562
- Neutron attenuation, 572
- New concrete surfaces
- applied silicates, 471
- bond breakers, 471
- curing, 469–473
- dry shake hardeners, 471
- effectiveness of curing, 467–468
- hydration research, 472
- maturity testing, 472
- NMR, time of setting, 97
- Nondestructive tests, 314–331
- combined methods, 331
- echo method, 319–320
- ground penetrating radar, 321–322
- impulse response method, 320
- infrared-thermographic techniques, 320–321
- in-place strength testing, 136–137
- maturity method, 330–331
- pin penetration test, 328
- probe penetration test, 324–328
- pullout tests, 331
- pullout test, 328–330
- pulse velocity method, 317–319
- rebound method, 322–324
- resonant frequency methods, 314–317
- shotcrete, 622–623
- spectral analysis of surface waves, 320
- stress wave propagation methods, 319–320
- surface hardness methods, 322–328
- Nonparametric tests, 28
- Nonplastic mixtures, 12–13
- No-slump concrete, measuring
consistency, 68–69
- Nozzles, shotcrete, 619
- NT Build 443, 246
- NT Build 492, 247
- Nuclear methods, 64
- Nuclear particles, 571–572
- Nuclear-shielding properties, 302
- Nurse-Saul maturity function, 330

O
- Oils, oxidation and chemical attack, 266
- Operating characteristics, 22
- Operator subjectivity, air content
testing, 298
- Organic impurities, test for, 362
- Organic materials, 625–630
- bituminous coatings, 628–630
- bonding and patching materials, 625–626
- epoxy resins, 626–628
- sealers, 630
- Orimet, 643
- Osmotic pressure hypothesis, 156
- Overlaying materials, epoxy resins, 626–628
- Oxides, chemist’s shorthand, 451

P
- Paint
 - abrasion resistance and, 187
 - maintenance, latex-modified, 614
- Particles
 - condition, petrographic evaluation, 382–383
 - shape, 39–40, 549
 - size distribution, 41–42
- Paste-aggregate bond, bleeding and, 106–107
- Paste-aggregate interface, strength, 127
- Paste content, effect on density, 304
- Paste-steel bond, bleeding and, 107
- Patching materials, 625–628
- Pavement
 - roller-compacted concrete, 596, 601
 - thickness measurement, ground
 - penetrating radar, 322
 - strength, 80
 - wear testing, 373
- Penetration methods, see Time of setting
- Penetration resistance data, time of setting, 87–88
- Percolation plots, 43–44
- Periclase, expansion due to hydration, 219, 221
- Perlite, petrographic evaluation, 395
- Permeability
 - aggregates, 12
 - cement paste, 11–12
 - decreasing, 168
 - density, 301
 - hardened cement, slag effect, 519–520
 - polymer-modified concrete and mortar, 610–613
 - relationship with porosity, 247–250
 - roller-compactd concrete, 600
- Permeability coefficients, 11
- Petrographers, qualifications, 377–378
- Petrographic evaluation, 207–213
- acceptability, 211
- age of concrete under study, 210
- aggregates, 377–398, 404–405, 410
- contamination detection, 379
- correlation of samples with aggregates previous tested, 378–379
- determining processing effects, 379–380
- establishing properties and performance, 378
- hardened concrete, 383–384
- natural, 384, 386–387
- observations included in, 381–382
- particle condition, 382–383
- performance, 380–381
- preliminary determination of quality, 378
- purpose, 378–380
- selecting and interpreting other tests, 379
- alkali-reactive carbonate rocks, 413–415
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blow-furnace slag</td>
<td>392–394</td>
</tr>
<tr>
<td>Cement content</td>
<td>310</td>
</tr>
<tr>
<td>Clay lumps</td>
<td>379</td>
</tr>
<tr>
<td>Composition</td>
<td>210–211</td>
</tr>
<tr>
<td>Concrete exposed to freezing and thawing</td>
<td>212</td>
</tr>
<tr>
<td>Crushed stone</td>
<td>390–392</td>
</tr>
<tr>
<td>Dolomite carbonate rocks</td>
<td>421</td>
</tr>
<tr>
<td>Environment effect</td>
<td>211–212</td>
</tr>
<tr>
<td>Friable particles</td>
<td>379</td>
</tr>
<tr>
<td>Hardened concrete</td>
<td>411</td>
</tr>
<tr>
<td>Lightweight concrete aggregates</td>
<td>394–395</td>
</tr>
<tr>
<td>Methods</td>
<td>208–209</td>
</tr>
<tr>
<td>Observations</td>
<td>210</td>
</tr>
<tr>
<td>Purpose</td>
<td>209</td>
</tr>
<tr>
<td>Reconstruction of history of field concrete</td>
<td>210</td>
</tr>
<tr>
<td>Recycled concrete</td>
<td>395–398</td>
</tr>
<tr>
<td>Responsibilities</td>
<td>208</td>
</tr>
<tr>
<td>For soundness</td>
<td>359–360</td>
</tr>
<tr>
<td>Source of concrete</td>
<td>210</td>
</tr>
<tr>
<td>Texture</td>
<td>210</td>
</tr>
<tr>
<td>Petrography</td>
<td>207–208</td>
</tr>
<tr>
<td>Phase composition, Portland cement</td>
<td>451</td>
</tr>
<tr>
<td>Pin penetration test</td>
<td>328</td>
</tr>
<tr>
<td>Placement</td>
<td></td>
</tr>
<tr>
<td>Self-consolidating concrete</td>
<td>641–642</td>
</tr>
<tr>
<td>Size and height, bleeding and</td>
<td>116–117</td>
</tr>
<tr>
<td>Placing, bleeding and</td>
<td>106</td>
</tr>
<tr>
<td>Plastic concrete</td>
<td>102–106</td>
</tr>
<tr>
<td>Plasticizers, bleeding and</td>
<td>115–116</td>
</tr>
<tr>
<td>Plastics, embedded</td>
<td>180</td>
</tr>
<tr>
<td>Plastic shrinkage</td>
<td>104–106</td>
</tr>
<tr>
<td>Plastic shrinkage, 215</td>
<td>215</td>
</tr>
<tr>
<td>Poiseuille-Hagen law</td>
<td>247</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>195, 200, 315–316</td>
</tr>
<tr>
<td>Porosity</td>
<td>9, 238–240</td>
</tr>
<tr>
<td>Porosity, capillary tension</td>
<td>9</td>
</tr>
<tr>
<td>Porous, aggregates</td>
<td>12</td>
</tr>
<tr>
<td>Porous concrete, bleeding and</td>
<td>102–106</td>
</tr>
<tr>
<td>Placing, bleeding and</td>
<td>106</td>
</tr>
<tr>
<td>Postbleeding expansion</td>
<td>103–104</td>
</tr>
<tr>
<td>Portland cement</td>
<td>460</td>
</tr>
<tr>
<td>Portland cement, alkali sulfates</td>
<td>460</td>
</tr>
<tr>
<td>Bogue calculations</td>
<td>451–452</td>
</tr>
<tr>
<td>Calcium sulfate</td>
<td>459–460</td>
</tr>
<tr>
<td>Carbonate</td>
<td>459</td>
</tr>
<tr>
<td>Cement content analysis</td>
<td>311</td>
</tr>
<tr>
<td>Cement phases and performance</td>
<td>453</td>
</tr>
<tr>
<td>Chemical composition</td>
<td>450–451</td>
</tr>
<tr>
<td>Chemical properties</td>
<td>450–453</td>
</tr>
<tr>
<td>Chemical requirements</td>
<td>455–456</td>
</tr>
<tr>
<td>Performance versus prescriptive standards</td>
<td>460</td>
</tr>
<tr>
<td>Phosphorus spacing factor</td>
<td>475</td>
</tr>
<tr>
<td>Roller-compacted concrete</td>
<td>597</td>
</tr>
<tr>
<td>Substitute elements in clinker phases</td>
<td>452</td>
</tr>
<tr>
<td>Sulfur trioxide</td>
<td>454–455</td>
</tr>
<tr>
<td>Trace elements, 460</td>
<td>460</td>
</tr>
<tr>
<td>Types, ASTM C 150 chemical requirements</td>
<td>455</td>
</tr>
<tr>
<td>Volume change, 221–222</td>
<td>455</td>
</tr>
<tr>
<td>Portland cement paste</td>
<td>174</td>
</tr>
<tr>
<td>Carbonation</td>
<td>6–7</td>
</tr>
<tr>
<td>Postbleeding expansion</td>
<td>103–104</td>
</tr>
<tr>
<td>Powers’ spacing factor</td>
<td>475</td>
</tr>
<tr>
<td>Powers’ spacing factor</td>
<td>293–294</td>
</tr>
<tr>
<td>Pozzolanic reaction</td>
<td>9</td>
</tr>
<tr>
<td>Pozzolans</td>
<td>265</td>
</tr>
<tr>
<td>Activity index, 437–504</td>
<td>504</td>
</tr>
<tr>
<td>Bleeding and</td>
<td>114</td>
</tr>
<tr>
<td>Chemical composition</td>
<td>457</td>
</tr>
<tr>
<td>Controlling alkali-silica reaction</td>
<td>505–506</td>
</tr>
<tr>
<td>Natural</td>
<td></td>
</tr>
<tr>
<td>Chemical requirements</td>
<td>499–500</td>
</tr>
<tr>
<td>Classification</td>
<td>499</td>
</tr>
<tr>
<td>History and use</td>
<td>496–499</td>
</tr>
<tr>
<td>Optional chemical requirements</td>
<td>500–503</td>
</tr>
<tr>
<td>Physical requirements</td>
<td>503–505</td>
</tr>
<tr>
<td>Raw or calcined natural</td>
<td></td>
</tr>
<tr>
<td>Avoiding alkali-silica reactivity</td>
<td>408</td>
</tr>
<tr>
<td>Roller-compacted concrete</td>
<td>597</td>
</tr>
<tr>
<td>Sampling</td>
<td>18</td>
</tr>
<tr>
<td>Strength index</td>
<td>503–504</td>
</tr>
<tr>
<td>Sulfate resistance and</td>
<td>260</td>
</tr>
<tr>
<td>Precast concrete</td>
<td>567–568, 575</td>
</tr>
<tr>
<td>Precision</td>
<td>296–297</td>
</tr>
<tr>
<td>Acceptance testing</td>
<td>26–27</td>
</tr>
<tr>
<td>Chemical analysis of hydraulic cement</td>
<td>458</td>
</tr>
<tr>
<td>Limit</td>
<td>28</td>
</tr>
<tr>
<td>Sulfate soundness test</td>
<td>356–357</td>
</tr>
<tr>
<td>Preformed foam, cellular concrete</td>
<td>562–563</td>
</tr>
<tr>
<td>Premature stiffening test, test for</td>
<td>440</td>
</tr>
<tr>
<td>Preplaced aggregate concrete</td>
<td>591–594</td>
</tr>
<tr>
<td>Aggregates</td>
<td>592–593</td>
</tr>
<tr>
<td>Cementing materials</td>
<td>591</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>593</td>
</tr>
<tr>
<td>Density</td>
<td>594</td>
</tr>
<tr>
<td>Fluid grout characteristics</td>
<td>593</td>
</tr>
<tr>
<td>Grout fluidifier</td>
<td>592</td>
</tr>
<tr>
<td>Grout mix proportions</td>
<td>592</td>
</tr>
<tr>
<td>Grout surface monitoring</td>
<td>593</td>
</tr>
<tr>
<td>Hardened</td>
<td>594</td>
</tr>
<tr>
<td>Radiation shielding</td>
<td>576</td>
</tr>
<tr>
<td>Temperatures at time of grout injections</td>
<td>593</td>
</tr>
<tr>
<td>Time of setting</td>
<td>594</td>
</tr>
<tr>
<td>Pressure meter</td>
<td>75</td>
</tr>
<tr>
<td>Prestressed concrete, corrosion</td>
<td>169–170</td>
</tr>
<tr>
<td>Prestressing force, loss</td>
<td>203</td>
</tr>
<tr>
<td>Prewetting, lightweight aggregates</td>
<td>553</td>
</tr>
<tr>
<td>Probe penetration test</td>
<td>324–328</td>
</tr>
<tr>
<td>Advantages and disadvantages</td>
<td>327–328</td>
</tr>
<tr>
<td>Versus core testing</td>
<td>327</td>
</tr>
<tr>
<td>Production control, workability</td>
<td>60–61</td>
</tr>
<tr>
<td>Proportioning</td>
<td>12–13</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>185</td>
</tr>
<tr>
<td>Cellular concrete</td>
<td>563</td>
</tr>
<tr>
<td>Lightweight aggregate concrete</td>
<td>552–553</td>
</tr>
<tr>
<td>Polymer-modified concrete and mortar</td>
<td>608</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>185</td>
</tr>
<tr>
<td>Cellular concrete</td>
<td>563</td>
</tr>
<tr>
<td>Lightweight aggregate concrete</td>
<td>552–553</td>
</tr>
<tr>
<td>Polymer-modified concrete and mortar</td>
<td>608</td>
</tr>
<tr>
<td>Roller-compacted concrete</td>
<td>598–599</td>
</tr>
<tr>
<td>Self-consolidating concrete</td>
<td>640–641</td>
</tr>
<tr>
<td>Shotcrete</td>
<td>620–621</td>
</tr>
<tr>
<td>Workability and</td>
<td>66</td>
</tr>
<tr>
<td>Proton attenuation</td>
<td>572–573</td>
</tr>
<tr>
<td>Proton magnetic resonance</td>
<td>472</td>
</tr>
<tr>
<td>Pulloff tests</td>
<td>331</td>
</tr>
<tr>
<td>Pullout test</td>
<td>136, 328–330</td>
</tr>
<tr>
<td>Standardization</td>
<td>329–330</td>
</tr>
<tr>
<td>Pulse velocity method</td>
<td>317–319</td>
</tr>
<tr>
<td>Standardization</td>
<td>318–319</td>
</tr>
<tr>
<td>Pumice, petrographic evaluation</td>
<td>394–395</td>
</tr>
</tbody>
</table>
Quality, preliminary determination, 378
Quality assurance
shotcrete, 622
supplementary cementitious materials, 507
Quality control
cellular concrete, 568
packaged, dry, cementitious mixtures, 635
roller-compacted concrete, 602–603
self-consolidating concrete, 643–644
slag, 514–515
uniformity, tests, 61–63
Quantitative phase analysis, hydraulic cement, 459
Quantitative x-ray diffraction, hydraulic cement, 459–460
Quarry sampling, alkali-carbonate rock reactivity, 421–422
Quartz, fire and, 277
Quick set, 7
R
Radiation shielding, 570–576
absorption cross section, 573
atomic structure and physics, 570–572
cement materials, 573–575
density, 574
irradiation effects, 574–575
mechanics, 572–573
physical and biological perspective, 572
placement and verification, 575
preplaced-aggregate concrete, 576
scattering cross section, 573
temperature effects, 575
terms for design calculations, 573
Radioactivity, recycled concrete, 396
Radon gas, 572
Range, 23
Rapid chloride permeability, 47, 246–247
Ready-mixed concrete, 533–545
aggregates, 539
air-entraining admixtures, 538
air void system, 538
approval of mixtures, 536
basis of purchase, 534–535
batching and measuring materials, 538–539
batching plant, 539–540
compressive strength testing, 543–544
control of water addition, 542–543
failure to meet strength requirements, 544
high-range water reducers, 537, 542
history of industry, 533
hydration stabilizing admixtures, 537
mixer wash water, 536–537
mixing operations, 540–542
mixing, placing, and curing, 553–554
mixing uniformity testing, 542
ordering information, 535–536
recorders, 540
returned concrete, 537
sampling, 543
slump and air content, 537–538
specifications, 534
testing laboratories, 543
trust mixer hold back, 534–535
volumetric concrete mixers, 543
water-cementitious materials ratio, 535
water quality, 536
yield, 534
Rebound method, 322–324
Recycled concrete, 395–397
Refractory concrete, high temperatures, 285
Refractory shotcrete, 618
Regression lines, 24
Reinforced steel, see Corrosion, reinforced steel
Reinforcing bars, shotcrete, 620
Rejectable quality level, 22
Relative density, aggregates, 349–350, 549
Relative humidities, 9
Relaxation, 201–203
Remixing, bleeding and, 118
Remolding test, 67
Representative sample, 25
Residual stress, calculations, 203–204
Resonant frequency methods, 157, 314–317
damping properties, 316
dynamic modulus of elasticity, 314–316
limitations and usefulness, 316–317
other methods, 316
standardization of methods, 316
Returned concrete, reuse, 537
Reusable molds, 81
Revibration, bleeding and, 117–118
Revolutionary disk abrasion test machine, 188–189
Rewetting, microstructure effects, 9
Rheological methods, time of setting, 96–97
Rheologic properties, 201–204
Rheology
cement paste, 10
fresh cement and concrete, 40–41
Rheometers, 70
Rice husk ash, bleeding and, 114
Ring test, fiber-reinforced concrete, 588
Rock cylinder expansion test, 420–421
Roller-compacted concrete, 545–603
advantages, 596–597
aggregates, 597–598
air-entraining admixtures, 598
cementitious materials, 597
curing, 601–602
dams, 595–596
definition, 595
hardened, properties, 600
pavement, 596
placement, 601
proportioning, 598–599
quality control, 602–603
water-reducing and retarding admixtures, 598
Roller-compacted dam method, 599
Roof deck fills, cellular concrete, 567
Rotating-cutter drill press, 190
Roundness, 340–342
S
Salt attack, 266–267
Salts, dissolved, effect on lime dissolution, 255
Sample
preparation, hardened concrete, 310
selection, hardened concrete, 310
size, 25
unit, 17
see also Specimens
Sampling, 16–17
air content, 74, 297
contamination, 18
determination of uniformity, 19
fresh concrete, 19–20
fresh fiber-reinforced concrete, 579
hardened concrete, 20
lightweight aggregates, 554
ready-mixed concrete, 543
statistical considerations, 24–25
Sand
petrographic evaluation, 384, 386–387
workability and, 65
Sandblasting, abrasion testing, 187
Sanded cellular concrete, 562
Saturated flow, test methods, 245
Saturated steam conditions, 283
Saturation index, 255
Sawability, cellular concrete, 567
Sawed specimens, strength testing, 127–128
Scaling, 156, 254–256
bleeding and, 108–109
resistance, 161–162, 610
slag effect, 524
Scanning electron microscopy, hardened concrete, 312
Scattering cross section, radiation shielding, 573
Scoria, petrographic evaluation, 394–395
Sealers, organic, 630
Sealing compounds, 629
Seawater, 265–266
mixing water, 464–465
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentation</td>
<td>7</td>
</tr>
<tr>
<td>Self-consolidating concrete</td>
<td>637–644</td>
</tr>
<tr>
<td>admixtures</td>
<td>639</td>
</tr>
<tr>
<td>advantages</td>
<td>638–639</td>
</tr>
<tr>
<td>aggregates</td>
<td>639</td>
</tr>
<tr>
<td>applications</td>
<td>638</td>
</tr>
<tr>
<td>batching and mixing</td>
<td>641</td>
</tr>
<tr>
<td>definition</td>
<td>637</td>
</tr>
<tr>
<td>environmental benefits</td>
<td>638–639</td>
</tr>
<tr>
<td>finishing and curing</td>
<td>642</td>
</tr>
<tr>
<td>hardened properties</td>
<td>642–643</td>
</tr>
<tr>
<td>history</td>
<td>637–638</td>
</tr>
<tr>
<td>placement</td>
<td>641–642</td>
</tr>
<tr>
<td>proportioning</td>
<td>640–641</td>
</tr>
<tr>
<td>quality control</td>
<td>643–644</td>
</tr>
<tr>
<td>supplementary cementitious materials</td>
<td>639</td>
</tr>
<tr>
<td>transporting</td>
<td>641</td>
</tr>
<tr>
<td>workability</td>
<td>69–70</td>
</tr>
<tr>
<td>Self-desiccation</td>
<td>216</td>
</tr>
<tr>
<td>Self-leveling flooring materials</td>
<td>636</td>
</tr>
<tr>
<td>Service life</td>
<td></td>
</tr>
<tr>
<td>modeling</td>
<td>47</td>
</tr>
<tr>
<td>strategies to improve</td>
<td>254</td>
</tr>
<tr>
<td>Set, hydraulic cements</td>
<td>440–441</td>
</tr>
<tr>
<td>Set-retarding admixtures</td>
<td>484–485</td>
</tr>
<tr>
<td>Setting, see Time of setting</td>
<td></td>
</tr>
<tr>
<td>Sewer lines, acid attack</td>
<td>264</td>
</tr>
<tr>
<td>Shale, petrographic evaluation</td>
<td>394</td>
</tr>
<tr>
<td>Shape</td>
<td>340–342</td>
</tr>
<tr>
<td>aggregates</td>
<td>347–348</td>
</tr>
<tr>
<td>petrographic evaluation</td>
<td>383</td>
</tr>
<tr>
<td>Shear strength, cellular concrete</td>
<td>566</td>
</tr>
<tr>
<td>Shear stress</td>
<td>195–196</td>
</tr>
<tr>
<td>Sheet materials, curing</td>
<td>469</td>
</tr>
<tr>
<td>Shotcrete</td>
<td>616–623</td>
</tr>
<tr>
<td>ACI and</td>
<td>617</td>
</tr>
<tr>
<td>applications, history</td>
<td>619</td>
</tr>
<tr>
<td>ASTM and</td>
<td>617–618</td>
</tr>
<tr>
<td>batching and mixing</td>
<td>621–622</td>
</tr>
<tr>
<td>definition</td>
<td>616–617</td>
</tr>
<tr>
<td>dry-mixture</td>
<td>621</td>
</tr>
<tr>
<td>equipment</td>
<td>619</td>
</tr>
<tr>
<td>fiber-reinforced</td>
<td>618</td>
</tr>
<tr>
<td>history</td>
<td>618–619</td>
</tr>
<tr>
<td>latex-modified</td>
<td>614</td>
</tr>
<tr>
<td>materials</td>
<td>619–620</td>
</tr>
<tr>
<td>nozzles</td>
<td>619</td>
</tr>
<tr>
<td>prepackaged</td>
<td>636</td>
</tr>
<tr>
<td>properties</td>
<td>617</td>
</tr>
<tr>
<td>proportioning</td>
<td>620–621</td>
</tr>
<tr>
<td>quality assurance</td>
<td>622</td>
</tr>
<tr>
<td>refractory</td>
<td>618</td>
</tr>
<tr>
<td>testing</td>
<td>622–623</td>
</tr>
<tr>
<td>wet-mixture</td>
<td>621</td>
</tr>
<tr>
<td>Shrinkage</td>
<td></td>
</tr>
<tr>
<td>lightweight aggregate concrete</td>
<td>556</td>
</tr>
<tr>
<td>slag effect</td>
<td>523–524</td>
</tr>
<tr>
<td>Shrinkage-reducing admixtures</td>
<td>488</td>
</tr>
<tr>
<td>Shrink mixing, ready-mixed concrete</td>
<td>541</td>
</tr>
<tr>
<td>Sieve stability, self-consolidating concrete</td>
<td>644</td>
</tr>
<tr>
<td>Silane</td>
<td>169, 630</td>
</tr>
<tr>
<td>Silica fume</td>
<td>7, 9, 265, 507–508</td>
</tr>
<tr>
<td>avoiding alkali-silica reactivity</td>
<td>408</td>
</tr>
<tr>
<td>batching</td>
<td>538</td>
</tr>
<tr>
<td>bleeding and</td>
<td>114</td>
</tr>
<tr>
<td>chemical composition</td>
<td>457</td>
</tr>
<tr>
<td>chemical requirements</td>
<td>507–508</td>
</tr>
<tr>
<td>compatibility with</td>
<td>526</td>
</tr>
<tr>
<td>drying shrinkage</td>
<td>219</td>
</tr>
<tr>
<td>fire resistance and</td>
<td>276</td>
</tr>
<tr>
<td>history and</td>
<td>507</td>
</tr>
<tr>
<td>permeability and</td>
<td>169</td>
</tr>
<tr>
<td>physical requirements</td>
<td>508</td>
</tr>
<tr>
<td>Silicates, applied to new concrete surfaces</td>
<td>471</td>
</tr>
<tr>
<td>Single-use mold</td>
<td>81</td>
</tr>
<tr>
<td>Skewness</td>
<td>23</td>
</tr>
<tr>
<td>Skid-resistant coatings</td>
<td></td>
</tr>
<tr>
<td>polymer-modified concrete and mortar</td>
<td>613</td>
</tr>
<tr>
<td>Slag, 9, 512–528</td>
<td></td>
</tr>
<tr>
<td>activity index</td>
<td>437, 514</td>
</tr>
<tr>
<td>blast-furnace</td>
<td></td>
</tr>
<tr>
<td>expanded, petrographic evaluation</td>
<td>394</td>
</tr>
<tr>
<td>petrographic evaluation</td>
<td>392–394</td>
</tr>
<tr>
<td>bleeding and</td>
<td>114</td>
</tr>
<tr>
<td>blended cement</td>
<td>515</td>
</tr>
<tr>
<td>chemical requirements</td>
<td>514</td>
</tr>
<tr>
<td>compatibility with</td>
<td>526</td>
</tr>
<tr>
<td>aggregates</td>
<td>526</td>
</tr>
<tr>
<td>chemical admixtures</td>
<td>526</td>
</tr>
<tr>
<td>supplementary cementitious materials</td>
<td>526–527</td>
</tr>
<tr>
<td>composition</td>
<td>516–517</td>
</tr>
<tr>
<td>compounds in</td>
<td>392–393</td>
</tr>
<tr>
<td>definition</td>
<td>512</td>
</tr>
<tr>
<td>effect on fresh concrete properties</td>
<td>517–519</td>
</tr>
<tr>
<td>effect on hardened concrete properties</td>
<td>519–526</td>
</tr>
<tr>
<td>effect on hydraulic activity</td>
<td>517</td>
</tr>
<tr>
<td>environmental benefits</td>
<td>527–528</td>
</tr>
<tr>
<td>fineness</td>
<td>514</td>
</tr>
<tr>
<td>fire resistance and</td>
<td>276</td>
</tr>
<tr>
<td>grades</td>
<td>514</td>
</tr>
<tr>
<td>ground granulated blast-furnace</td>
<td></td>
</tr>
<tr>
<td>avoiding alkali-silica reactivity</td>
<td>408</td>
</tr>
<tr>
<td>chemical composition</td>
<td>457</td>
</tr>
<tr>
<td>history</td>
<td>512–513</td>
</tr>
<tr>
<td>production</td>
<td>515</td>
</tr>
<tr>
<td>quality control</td>
<td>514–515</td>
</tr>
<tr>
<td>specifications</td>
<td>513–515</td>
</tr>
<tr>
<td>sulfate resistance and</td>
<td>260</td>
</tr>
<tr>
<td>U. S. cement use</td>
<td>513</td>
</tr>
<tr>
<td>Slate, petrographic evaluation</td>
<td>394</td>
</tr>
<tr>
<td>Slump</td>
<td></td>
</tr>
<tr>
<td>rate of loss</td>
<td>542</td>
</tr>
<tr>
<td>ready-mixed concrete</td>
<td>537</td>
</tr>
<tr>
<td>Slump flow test, self-consolidating concrete</td>
<td>643</td>
</tr>
<tr>
<td>Slump test</td>
<td>61–62, 66–67</td>
</tr>
<tr>
<td>Slurry mixtures, cellular concrete</td>
<td>563</td>
</tr>
<tr>
<td>Sodium sulfate reaction</td>
<td>258</td>
</tr>
<tr>
<td>Soft particles, testing for</td>
<td>361–362</td>
</tr>
<tr>
<td>Solid-phase admixtures</td>
<td>19</td>
</tr>
<tr>
<td>Sonoscope</td>
<td>317</td>
</tr>
<tr>
<td>Soundness</td>
<td>356–360</td>
</tr>
<tr>
<td>absorption tests</td>
<td>358</td>
</tr>
<tr>
<td>definition</td>
<td>355</td>
</tr>
<tr>
<td>petrographic examination for</td>
<td>359–360</td>
</tr>
<tr>
<td>sulfate soundness test</td>
<td>356–358</td>
</tr>
<tr>
<td>supplementary cementitious materials</td>
<td>504</td>
</tr>
<tr>
<td>Spacing factor</td>
<td>293–294</td>
</tr>
<tr>
<td>air voids</td>
<td>475</td>
</tr>
<tr>
<td>test result interpretation</td>
<td>300</td>
</tr>
<tr>
<td>Spalling, fire-damage</td>
<td>283–284</td>
</tr>
<tr>
<td>Specific gravity, aggregates</td>
<td>12, 349</td>
</tr>
<tr>
<td>Specific heat</td>
<td>229</td>
</tr>
<tr>
<td>aggregates</td>
<td>429</td>
</tr>
<tr>
<td>high temperatures and</td>
<td>280–281</td>
</tr>
<tr>
<td>test methods</td>
<td>429–430</td>
</tr>
<tr>
<td>Specific surface</td>
<td></td>
</tr>
<tr>
<td>air-void system</td>
<td>292–293</td>
</tr>
<tr>
<td>test result interpretation</td>
<td>300</td>
</tr>
<tr>
<td>Specified density concrete</td>
<td>554–555</td>
</tr>
<tr>
<td>Specimens</td>
<td>80–85</td>
</tr>
<tr>
<td>applications</td>
<td>80–81</td>
</tr>
<tr>
<td>dimensions, flexural strength and,</td>
<td>134</td>
</tr>
<tr>
<td>end conditions, compressive strength,</td>
<td>129–130</td>
</tr>
<tr>
<td>from existing structures, strength testing,</td>
<td>127–128</td>
</tr>
<tr>
<td>field curing</td>
<td>83</td>
</tr>
<tr>
<td>length and diameter, splitting tensile strength,</td>
<td>135–136</td>
</tr>
<tr>
<td>making and curing</td>
<td>82–83</td>
</tr>
<tr>
<td>in the field, 81–84</td>
<td></td>
</tr>
<tr>
<td>in the laboratory, 84</td>
<td></td>
</tr>
<tr>
<td>moisture condition</td>
<td></td>
</tr>
<tr>
<td>compressive strength and</td>
<td>132</td>
</tr>
<tr>
<td>splitting tensile strength and, 135</td>
<td></td>
</tr>
<tr>
<td>molds, 81</td>
<td></td>
</tr>
<tr>
<td>samples derived from</td>
<td>82</td>
</tr>
<tr>
<td>sizes, 82</td>
<td></td>
</tr>
<tr>
<td>compressive strength and</td>
<td>130–131</td>
</tr>
<tr>
<td>creep and</td>
<td>202</td>
</tr>
<tr>
<td>flexural strength and</td>
<td>134</td>
</tr>
<tr>
<td>standard final laboratory curing,</td>
<td>83–84</td>
</tr>
<tr>
<td>standard initial curing</td>
<td>83</td>
</tr>
<tr>
<td>test data, 82</td>
<td></td>
</tr>
<tr>
<td>testing personnel</td>
<td>81</td>
</tr>
<tr>
<td>transporting</td>
<td>83</td>
</tr>
<tr>
<td>uses, 81–82</td>
<td></td>
</tr>
<tr>
<td>see also Sample</td>
<td></td>
</tr>
<tr>
<td>Spectral analysis of surface waves method,</td>
<td>320</td>
</tr>
<tr>
<td>Speedy moisture test</td>
<td>353</td>
</tr>
<tr>
<td>Sphericity</td>
<td>340–341</td>
</tr>
<tr>
<td>Splitting tensile strength</td>
<td>80, 133–136</td>
</tr>
<tr>
<td>Spring coefficient</td>
<td>194</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>23</td>
</tr>
</tbody>
</table>
Statistical considerations, 22–28
 arithmetic mean, 23
 coefficient of variation, 23
 correlation coefficient, 23
 difference two sigma limit, 23, 26
 evaluation of test data, 26
 inspection by variables, 23
 kurtosis, 23
 number of subsamples, 25
 operating characteristics, 22
 range, 23
 regression lines, 24
 sampling, 24–25
 skewness, 23
 standard deviation, 23
 statistical parameters, 22–23
 testing, 24–26
Statistical parameters, 22–23
Statistical uncertainty, air content, 297
Steel
 embedded, fire and, 277–278
 new, 171
Stockpiles, sampling, 17
Stoke’s law, 247
Strain capacity, polymer-modified concrete, 32
Stratified random sampling, 25
Strength, 32, 125–138
 aggregates, 370–371
 cement paste, 126
 effect of algae in mixing water, 465
 fatigue, 137–138
 flexural, 134–135
 hardened cement, slag effect, 519
 hardened concrete, bleeding and, 106–112
 hardened fiber-reinforced concrete, tests, 584–587
 hydraulic cements, 444–446
 nature of, 125–127
 paste-aggregate interface, 127
 pavement concrete, 80
 prediction at later ages, 141–152
 accelerated curing methods, 141–149
 compressive strength, 141–149
 strength estimation, 147–149
 rebound test method, 323–324
 reduction, air content and, 289
 relationships, 136
 testing, 63, 80–81
 evaluation, 28
 nondestructive in-place, 136–137
 purposes, 125
 test specimen preparation, 127–128
 variables affecting, 80
 see also Compressive strength
Strengthening, hardened fiber-reinforced concrete, 582–583
Strength index, pozzolan, 503–504
Stress, combined states, strength and, 137
Stress-strain curve, concrete, 126
Stress wave propagation methods, 319–320
Structural integrity, fire and, 277–278
Surface hardness methods, 322–328
 pin penetration test, 322–328
 rebound method, 322–324
Surface moisture, aggregates, 352–353
Surface preparation, air content specimens, 298
Surface sealer, 169
Surface texture, 342–343
 aggregates, 347–348, 549
Surface treatment, abrasion resistance and, 187
Sweating, see Bleeding
Swelling, 216
Synthetic-resin coatings, 629

T
Temperature
 air entrainment and, 479
 workability and, 63
 radiation shielding, 575
Temperature-matched curing technique, 127
Temperature measurement, 73–74
Temperature rise, 234
Tensile creep, measurement, 202
Tensile strength, 80
 cellular concrete, 565
 lightweight aggregate concrete, 556
 splitting, 133–134
 test procedures, 133–134
Tension, modulus of elasticity, 198–199
Testing
 concerns, 51–52
 continuing improvements in quality of, 53
 shotcrete, 622–623
 statistical considerations, 25–26
 trends, 52–53
Testing laboratories, 51–54
 evaluation authorities, 53–54
 ready-mixed concrete, 543
 technician competency, 54
Testing machine, characteristics, compressive strength and, 132
Testing personnel, 81
Texture, 210
Thaulow concrete tester, 68–69
Thawing, see Freezing and thawing; Weathering tests
Thermal coefficient of expansion, 281, 427–428
Thermal conductivity, 226–227, 428
 cellular concrete, 564–565
 fire resistance of steel, 278
 high temperatures, 280–281
 test methods, 429–430
Thermal cracking, 284
Thermal cycling, high temperatures, 282
Thermal diffusivity, 229–230, 429–430
Thermal expansion, 230–232
 aggregates, 426–427
 cement paste, 12
Thermal incompatibilities, high temperatures, 281–282
Thermal methods, time of setting, 92–94
Thermal methods of analysis, hardened concrete, 312
Thermal properties, 226–236
aggregate, 277, 425–430
analytical methods, 235–236
coefficient of thermal expansion, 426–427
determining, 280
heat flow, 234–235
heat generation, 234
heat of hydration, 232–233
restrained volume changes, 235
significance, 233–236
specific heat, 229, 429
test methods, 227–228, 429–430
thermal conductivity, 226–227, 428
thermal diffusivity, 229–230, 429
thermal expansion, 230–232
Thermal shielding properties, 302
Thermal methods of analysis, hardened concrete, 240–241
advantages, 88
computer modeling, 97
current ASTM method, 86–90
advantages, 88
basics, 86–87
data manipulation, 87–88
disadvantages, 88–89
modifications, 89–90
electrical methods, 95–96
fresh concrete, slag effect, 518
as function of punch location, 89–90
history, 86
NMR, 97
other penetration methods, 90–92
preplaced aggregate concrete, 594
rheological methods, 96–97
temperature versus time, 93–94
test result significance, 136
thermal methods, 92–94
ultrasonic methods, 94–95
virtual testing, 43–44
X-ray diffraction, 97
Toughening, hardened fiber-reinforced concrete, 583–584
Toughness, hardened fiber-reinforced concrete, tests, 584–587
Trace elements, portland cement, 460
Transition zone, 13
Transport mechanisms, 240–242
test methods, 242–247
chloride ingress, 245
gas, 242–243
ionic diffusion, 245–247
water, 243–245
Transporting roller-compacted concrete, 601
self-consolidating concrete, 641
specimens, 83
Tricalcium aluminate, sulfate resistance and, 260
Truck mixing, ready-mixed concrete, 541–542
Truck slump meter, 68
TT-C-800, 470
Tuff, petrographic evaluation, 394–395
two-point workability tests, 70
Type K expansive cement, 219–221
U
U-Box, 643
Ultrasonic concrete tester, 317
Ultrasonic methods elastic modulus, 199–200
time of setting, 94–95
Underwater abrasion test method, 190–191, 368
Uniformity concrete-making materials, 30–37
evaluation, 32, 36–37
evaluation of uniformity, 32, 36–37
as function of design and construction process, 30–31
standard for determining, 36–37
density, 301
determination, 19
measuring, 61–64
workability and, 60
USBR 4907, 229
USBR 4908, 230, 260, 262
USBR 4910, 232
USBR 4911, 233
U.S. Bureau of Reclamation, test of mixer performance, 61
V
VCCTL, 38
Vee appatatus, 63, 68–69
Vermiculite, exfoliated, petrographic evaluation, 395
Very high strength concrete, high temperatures, 285
V-funnel, 643
Vibration, air entrainment and, 479–480
Vicat test, 441
Virtual Cement and Concrete Testing Laboratory, 38
Virtual testing, 38–48
adiabatic temperature rise, 45–46
chemical shrinkage, 44–45
definition, 38–39
future directions, 47–48
heat release, 45–46
laser diffraction method, 39
properties of hardened cement paste and concrete, 46–47
properties of hardening cement paste and concrete, 41–46
rheology of fresh cement and concrete, 40–41
setting time, 43–44
Viscosity-modifying admixtures, 66, 488
Visual survey, 170
Voids aggregates, 348–349
frequency, test result interpretation, 300
Voids content, density, 301
Volcanic cinders, petrographic evaluation, 394–395
Volume change, 215–223
autogenous, 216
bleeding, 102–103
carbonation shrinkage, 216–217
cement with reactive carbonate rocks, 415–417
delayed ettringite formation, 263
drying shrinkage, 217–219
expansion due to hydration of free CaO and MgO, 219, 221
expansive cement mortar and concrete, 219–223
length alkali-carbonate rock reactivity, 411
due to alkali-silica reaction, 406
hydraulic cements, 442, 444
Portland cement mortar and concrete, 221–222
restrained, 235
roller-compacted concrete, 600
swelling clay minerals, 361
test methods, 221–223
thermal, 230–232
fire and, 276–277
high temperatures and, 281–282
types, 215
Volumetric concrete mixers, 543
Volumetric method, air content measurement, 76–77
Volumetric Mixer Manufacturers Bureau, 543
W
Wagner test, 438
Walkability, cellular concrete, 566–567
WATEQ model, 255
Water absorption aggregates, 351–352
cellular concrete, 566
air entrainment and, 478
for cellular concrete, 562
city, analysis, 463–464
in concrete, 5–6
curing, 465–466
Water (continued)

free, high temperatures and, 283
lime-saturated, 255
mixing, see Mixing water
quality, ready-mixed concrete, 536
transport test methods, 243–245
volume of freezable, 290
Water-cementitious materials ratio
petrographic examination, 211
ready-mixed concrete, 535
Water-cement ratio, 9–10
bleeding and, 106, 112
sulfate resistance and, 261
Water content
basic, 12
bleeding and, 112
cement paste, drying shrinkage, 218, 220–221
curing and, 470
hardened concrete, determination, 311–312
heat of hydration and, 232
non-evaporable, cement phases, 43
thermal conductivity and, 226–227
uniformity, tests, 64
Water gain, see Bleeding
Water-immersion test method, 353
Water penetration, test methods,
244–245
Water-reducing admixtures, 10, 484–485
bleeding and, 115
workability and, 66
roller-compacted concrete, 598
Water-resistance basement coatings,
polymer-modified concrete and mortar, 614
Water retention, curing materials, 468
Water-vapor diffusion, 243–244
Wave reflection factor, 94–95
Wear, aggregates, 372–373
Weather conditions, bleeding and, 117
Weathering
other processes, 162
tests, 154–155
historical evolution, 155–156
rapid freezing and thawing tests, 157–160
theoretical considerations, 156–157
see also Freezing and thawing
Weeping, see Bleeding
Wet degradation test, aggregates, 368–370
Wick action, 245
Wigmore consistometer, 68
Willis-Hime method, 63
Windsor probe test system, 324
Wind velocity, bleeding and, 117
Wood, embedded, 179–180
Workability, 59–71
aggregate size and, 339
air content and, 62, 289
ball penetration test, 67
cellular concrete, 564
cement content uniformity, 63–64
definition, 64
density test, 62–63
entrained air and, 478–479
factors affecting, 64–66
fiber effect, 578
flow test, 63, 67
fresh concrete, slag effect, 517–518
fresh fiber-reinforced concrete, 579–581
grout consistency, 69
mixer uniformity, 61
normal consistency concrete, 66–68
no-slump concrete, 68–69
production control, 60–61
properties involved in, 64
quality control uniformity, 61–63
recycled concrete, 396
remolding test, 67
self-consolidating concrete, 69–70
strength testing, 63
surface texture and, 342
temperature and, 63
terminology, 59–60
tuck slump meter, 68
two-point tests, 70
uniformity of concrete, 61
Vebe apparatus, 63, 68–69
water content uniformity, 64
Wigmore consistometer, 68

X

X-ray diffraction
cement paste, 212
hardened concrete, 312
Rietveld analysis, 39, 42–43
time of setting, 97
X-ray fluorescence, hydraulic cement, 458

Y

Yield
air content and, 289
data, 73
fresh fiber-reinforced concrete, 581
ready-mixed concrete, 534
stress, cement paste, 10
Young’s modulus, 40, 194–195
relation with rock type, 371–372

Z

Zinc
embedded, 178–179
as galvanized coating for steel, 178
as steel coating, 169