INDEX

A

Abraders, 305–306, 309
Abradometer, for traffic paint studies, 472
Abraser, 308–309
for mar test, 298
Abrasiometer, 304–305
Abrasion, 302
block for, 311
imping for, mar resistance test, 297–298
resistance to, 301–312
and hardness, 301
loose or falling abrasive tests of, 302–304
and mar resistance, 301
and modulus of elasticity and tensile strength, 301
and rain or water erosion, 310
rectilinear motion for tests of, 307–308
rotating disks for tests of, 307–308
rotating wheels for tests of, 308–309
and service performance, 301–302
of tile-like coatings, 460
of traffic paint, 312, 472–473
wet abrasion methods for tests of, 310–311
testing methods, 307–308
Abrasive matter, in polishes, 440
Absorption
of architectural paint, 425–426
of oil (see Oils, absorption of)
Acetone tolerance of, oils, 65
Acid(s)
absorption by solvents, 143–144
in alkyl resins, 95–97
dye laeking, for pigments, 156
resistance to, in glass beads, 469
Acid value
of alkyl resins, 102
of oils, 55–56
of printing ink, 491
of resins, 84
of tall oil, 87
of varnish, 419
of waxes, 438
Acidity
of pigments, 500
of plasticizers, 124
of solvents, 146–147
Acrylcs
resin, 114–115
solubility parameters of, 132
Acrylonitrlle resins, 108–109
Acrylic values, in artificial weathering, 410
Activity test, for cleanliness of steel panels, 379–383
Adharometer, 317–318
Adharometer-Integrometer, 318
Adhesion, 314–331
adhesive joint tests of, 323–326
or architectural paint, 426–427
classification of test methods for, 315
and edge adhesion, test, 318–319
hydrophyl balance test of, 330–331
impact and bending tests of, 330
inertia tests of, 329–330
interfacial forces of, 314–315
knife removal test of, 315–319
lap shear tests of, 325–326
metal-glide adhesion test of polishes, 441–442
peel tests of, 326–329
scraping and scratching tests of, 319–323
of sealants, 449–452
of seamless floors, 461
tension tests of, 323–324, 325
torqueshear tests of, 326
Adhesive tape tests, of adhesion, 327
Adhesiveness
shearing, of putty, 447
tensile, of putty, 449
Adulteration
Alkali
Alcohols, in alkyd resins, 98
Air pressure tests, for adhesion, 329
Air pollution, 413–414
Aging tests, for caulks and sealants, 453–454
Aerosol propellants, chromatography of, 539
Amines
resin, 109
solubility parameters of, 132
spontaneous combustion of, 365
Analysis of whole paint, 495–514
bound identification in, 498–499
and chemical analysis of pigments, 500–514
flash point in, 498
nonvolatile content of, 496–497
pigment content of, 497
pigment separation in, 498
preliminary tests in, 496–498
sampling for, 493–496
solvent identification in, 499
solvent separation in, 499
vehicle separation in, 498
water content of, 497–498
Analyzers
for drying time, 277
for particle size measurements, 223, 224, 227,

529–530
Angle of contact, 216
in test for cleanliness of steel panels, 379
Angular-dependence techniques, for particle size measurement, 226
Angular scribe-stripping, for adhesion test, 322
Aniline point of solvents, 132–133
Aniline test, for urea-formaldehyde in nitrogen resins, 107
Antibiotics in paints, 370
Antifouling paints, 479–481
cuprous oxide in, 510
electron microscopy of, 481
leaching rate of, 481
metallic copper in, 480–481, 506, 510
Antimicrobial agents in paints, 367
Antimony oxide pigments, chemical analysis of,

502–503
Antimony trioxide pigments, 151
Appearance
of architectural paint film, 426
of clear floor sealers, 421
doors, 71
of seamless floors, 461
doors, 415
and weathering, 384
Architectural paint, 423–428
absorption and holdout of, 425–426
adhesion of, 426–427
appearance of, 426
blister resistance of, 427
coarse particles in, 423
color acceptance of, 426
density of, 423
condition in container, 423
dilution stability of, 423–424
dry film tests of, 426–428
drying time of, 426
efflorescence of, 427
eelongation of, 427
exterior, 423
fading of, 428
flash point of, 423
freeze-thaw stability of, 426
fume resistance of, 427
interior, 423
liquid, 423–426
resistance to fungi, 427
resistance to microorganisms, 426
scrub resistance of, 428
skinning of, 423
INDEX

stain resistance of, 428
viscosity of, 424
washability of, 427-428
working properties of, 424
yellowness index of, 428
Arnold test, for settling of pigments, 170
Artists colors
hardness of, 291
standards for, 49-50
Asbestos, in bituminous coatings, 465
Ash
in bituminous emulsions, 466
in lac, 90
in mercuric oxide pigment, 511
in oils, 61
in pigments, 500
ratio to binder, in electrocoating paints, 487
in resins, 84
in rosin, 85
in tall oil, 87
Asphalt, 462
bituminous, 462-467
see also Bituminous coatings
Asphalt trimmer, use of, 256
Asphalt, 462
in bituminous coatings, 465
in tall oil, 87

INDEX

B
Balanced beam tester
of adhesion, 320
of mar resistance, 296
Band viscometers, 197
Barium metaborate, as extender, 160
Barium sulfate
chemical analysis of pigment, 504
in chrome green pigment, 509
in zinc sulfide pigments, 502
Bayberry wax, properties of, 437
Beam testers
balanced
for adhesion, 320
for mar resistance, 296
swinging, for hardness, 285
Beeswax, properties of, 437
Bell jar test, of varnish films, 419
Belt buckle test, for mar resistance, 298
Blood tests, for adhesion, 330
for glazing compound flexibility, 449
for sealant adhesion, 451
Benzoguanamine-formaldehyde
in alkyd resins, 99, 100
in nitrogen resins, 106-107
Benzonic acid, in alkyd resins, 95-96
Binders
equal free, 164
and oil absorption, 242-243
fixed, 164
identification of, 498-499
ratio to ash, in electrocoating paints, 487
Bingham bodies, 182
Biological deterioration of paint, 366-370
Bituminous coatings, 462-467
aluminized, 465
reflectance of, 466
application of, 466
asphalt in, 465
blistering and sagging of, 466
contact compatibility test of, 464
distillation of, 465
ductility of, 463
emulsions of, 466-467
filler content of, 465
flash point of, 464
flexibility of, 466
nonvolatile content of, 464
penetration of, 463
and settling test for roof coatings, 465-466
softening point of, 463
solid and semisolid, 463-464
solubility of, in carbon disulfide, 462
solvent-thinned cut-back, 464-466
spot test of, 462-463
uniformity of, 464
viscosity of, 464
water content of, 465
Black pigments, 159-160
bone, 160
carbon, 160
carbonate chemical analysis of, 505-506
iron oxide, 160
mineral, 160
Blasting cleaning, of steel panels, 381-382
of solvents, 175
of resins, 81, 174
of plasticizers, 176
of pigments, 172-174
Bleeding
of printing ink, 491
tests for, 163-164
of traffic paint, resistance to, 473
Blister boxes, tests with, 346-347
Bleed test, overstripe, of pigments, 163
Bleeding of, in oils, 62
Bleach, heat of, 63
Bleed test, overstripe, of pigments, 163
Bleeding of printing ink, 491
for adhesion, 329
Blue
chemical analysis of pigments, 506-508
cobalt, 156
copper phthalocyanine, 158
diamonthe, 159
iron, 155
ultramarine, 156, 508
Boling point, of solvents, 139-140
Bond strength, of sealants, 449-451
Bone black pigment, 160
chemical analysis of, 505-506
Borates, as extenders, 160
Box tests, for fire retardance, 355
Break, in oils, 62
Bromine number, of solvents, 143-144
Bronze pigments, 161-162
Brown pigments, chemical analysis of, 509-510
Brushing test of, 403-404
Brush test, for adhesion, 329
Blister tests, for adhesion, 329
Bleeding of, in oils, 62
Bleach, heat of, 63
Bleed test, overstripe, of pigments, 163
Bleeding of printing ink, 491
for adhesion, 329
Blue
chemical analysis of pigments, 506-508
cobalt, 156
copper phthalocyanine, 158
diamonthe, 159
iron, 155
ultramarine, 156, 508
Boling point, of solvents, 139-140
Bond strength, of sealants, 449-451
Bone black pigment, 160
chemical analysis of, 505-506
Borates, as extenders, 160
Box tests, for fire retardance, 355
Break, in oils, 62
Bromine number, of solvents, 143-144
Bronze pigments, 161-162
Brown pigments, chemical analysis of, 509-510
Brushability of paint, 202-206, 424
Brushometer, 191, 205
Bubble pressure method, for surface tension
measurements, 215
Bubble viscometers, 197-198
Bulking values, 172-176
of oils, 174
of pigments, 172-174
of plasticizers, 176
of resins, 81, 174
of solvents, 175
Bullet method adhesion test, 330
Cabinet test, for fire retardance, 355-356
Cacahuananche oil, 53
Cadmium colors, 155
Calcium carbonate
chemical analysis of pigment, 503
as extender, 160
in Venetian red, 510
chloride, glass bead resistance to, 469
in driers, determination of, 73, 74
oxide
in calcium carbonate pigment, 503
in chrome green pigment, 509
in magnesium silicate pigment, 503
in zinc powder, 506
sulfate pigment, chemical analysis of 503-504
Candelilla wax, properties of, 437
Candle nut oil, 53
Carbon arc Weather-Ometer, 406
Carbon blacks, 160
chemical analysis of, 505-506
Carbon dioxide in carbonate white lead, 501
in red lead, 511
Carbonate white lead, basic, 150
chemical analysis of, 501
Carbonates, as extenders, 160
Carboxylic acids, in resins, 93-97
Carboxymethylcellulose, sodium, 122
Carnauba wax, 437
paraffin hydrocarbons in, 438
Caster, film, for latex, 253
Casting knife, film, adjustable, 252
Castor oil, 53
hydroxyl value of, 64
Cathodic protection, of marine paints, 481-482, 483-484
Caulking compounds, 445-445
aging tests on, 453-454
extrudability of, 446-447
rheological properties of, 446, 447-448
shrinkage of, 448-449
stain tests of, 454
tenacity of, 449
working properties of, 445-447
see also Sealants
Cellulose acetate, 120-121
-butyrate, 121
color and hue of, 120
-propionate, 121
viscosity of, 120
Cellulose nitrate, 119-120
in alkyd resins, 101
base solutions of, 120
viscosity of, 196
determinations of, 104-106
drying of, 119
film test of, 120
solubility of, 120
toluene dilution ratio of, 120
viscosity of, 119-120
Cellulolics, 119-123
cellulose acetate, 120-121
cellulose nitrate, 119-120
ethylcellulose, 121
hydroxyethylcellulose, 122
hydroxypropyl methylcellulose, 122-123
methylcellulose, 121-122
resins, 103-106
sodium carboxymethylcellulose, 122
and solubility parameters, 132
and viscosity, 195-196
Cement-base paint, 429-435
alkali resistance of, 431
coarse particles in, 429
color of, 429
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatography, 522-542</td>
<td></td>
</tr>
<tr>
<td>for acrylic resins, 114</td>
<td></td>
</tr>
<tr>
<td>adsorption, 523</td>
<td></td>
</tr>
<tr>
<td>for carboxylic acids in alkyd resins, 93</td>
<td></td>
</tr>
<tr>
<td>displacement analysis, 522-523</td>
<td></td>
</tr>
<tr>
<td>of drying oils, 69-70</td>
<td></td>
</tr>
<tr>
<td>elution analysis, 523</td>
<td></td>
</tr>
<tr>
<td>frontal analysis, 522</td>
<td></td>
</tr>
<tr>
<td>gas, 530-542</td>
<td></td>
</tr>
<tr>
<td>for binder identification, 498</td>
<td></td>
</tr>
<tr>
<td>glossary of, 540-542</td>
<td></td>
</tr>
<tr>
<td>gas-liquid, 530-539</td>
<td></td>
</tr>
<tr>
<td>of aerosol propellants, 539</td>
<td></td>
</tr>
<tr>
<td>interpretation of, 534-535</td>
<td></td>
</tr>
<tr>
<td>of oils, 537-538</td>
<td></td>
</tr>
<tr>
<td>of plasticizers, 539</td>
<td></td>
</tr>
<tr>
<td>pyrolytic, 538-539</td>
<td></td>
</tr>
<tr>
<td>of resins, 538-539</td>
<td></td>
</tr>
<tr>
<td>of solvents, 535-537</td>
<td></td>
</tr>
<tr>
<td>ti-technique, 530-534</td>
<td></td>
</tr>
<tr>
<td>gas-solid, 539-540</td>
<td></td>
</tr>
<tr>
<td>gel permeation, 526-527</td>
<td></td>
</tr>
<tr>
<td>liquid, 523-530</td>
<td></td>
</tr>
<tr>
<td>classical column, 524-525</td>
<td></td>
</tr>
<tr>
<td>high efficiency, 525-526</td>
<td></td>
</tr>
<tr>
<td>paper, 527-528</td>
<td></td>
</tr>
<tr>
<td>partition, 523</td>
<td></td>
</tr>
<tr>
<td>for phthalic anhydride in alkyd resins, 95</td>
<td></td>
</tr>
<tr>
<td>of plasticizers, 127-128, 539</td>
<td></td>
</tr>
<tr>
<td>of solvents, 141-143, 535-537</td>
<td></td>
</tr>
<tr>
<td>thin-layer, 528-530</td>
<td></td>
</tr>
<tr>
<td>of traffic paint, 475</td>
<td></td>
</tr>
<tr>
<td>Chromie greens, 155</td>
<td></td>
</tr>
<tr>
<td>chemical analysis of, 508-509</td>
<td></td>
</tr>
<tr>
<td>Chrome orange, chemical analysis of, 508</td>
<td></td>
</tr>
<tr>
<td>Chrome yellow, chemical analysis of, 508</td>
<td></td>
</tr>
<tr>
<td>Chromium, 508-509</td>
<td></td>
</tr>
<tr>
<td>oxide green, 156</td>
<td></td>
</tr>
<tr>
<td>chemical analysis of, 509</td>
<td></td>
</tr>
<tr>
<td>in strontium chromate pigment, 509</td>
<td></td>
</tr>
<tr>
<td>in zinc yellow pigment, 509</td>
<td></td>
</tr>
<tr>
<td>Clarity, of oils, 63</td>
<td></td>
</tr>
<tr>
<td>Cleanliness of steel panels, drop test of, 379</td>
<td></td>
</tr>
<tr>
<td>Cleavege tests, for adhesion, 326</td>
<td></td>
</tr>
<tr>
<td>Climate, effects of, 371</td>
<td></td>
</tr>
<tr>
<td>Climatet artificial weathering machine, 409</td>
<td></td>
</tr>
<tr>
<td>Coarse particles (see Particles, coarse)</td>
<td></td>
</tr>
<tr>
<td>Coaters for film preparation, dip, 256</td>
<td></td>
</tr>
<tr>
<td>Cobalt, in copper pigments, 510</td>
<td></td>
</tr>
<tr>
<td>in driers, determination of, 72-73, 74</td>
<td></td>
</tr>
<tr>
<td>Cobalt blue, 156</td>
<td></td>
</tr>
<tr>
<td>Coefficient-of-friction mar test, 299</td>
<td></td>
</tr>
<tr>
<td>Cohesiveness, of putty and caulking compounds, 449</td>
<td></td>
</tr>
<tr>
<td>Coin mar test, 299</td>
<td></td>
</tr>
<tr>
<td>Cold check test, of varnish dry film, 421</td>
<td></td>
</tr>
<tr>
<td>Cold crack test, of flexibility, 336</td>
<td></td>
</tr>
<tr>
<td>Color, 1-12 acceptance test, for architectural paint, 426</td>
<td></td>
</tr>
<tr>
<td>atlas of, 8</td>
<td></td>
</tr>
<tr>
<td>of cellulose acetate, 120</td>
<td></td>
</tr>
<tr>
<td>of cement-base paint, 429</td>
<td></td>
</tr>
<tr>
<td>of chrome pigments, 155</td>
<td></td>
</tr>
<tr>
<td>comparator, 9</td>
<td></td>
</tr>
<tr>
<td>defective observation of, 5</td>
<td></td>
</tr>
<tr>
<td>dictionary of, 8</td>
<td></td>
</tr>
<tr>
<td>of driers, 71</td>
<td></td>
</tr>
<tr>
<td>identification charts, 511-514</td>
<td></td>
</tr>
<tr>
<td>instrumental measurement of, 10-12</td>
<td></td>
</tr>
<tr>
<td>of lac, 90</td>
<td></td>
</tr>
<tr>
<td>mass, 41-50</td>
<td></td>
</tr>
<tr>
<td>basic factors in, 41</td>
<td></td>
</tr>
<tr>
<td>Cholling, in copper pigments, 510</td>
<td></td>
</tr>
<tr>
<td>in plasticizers, 126</td>
<td></td>
</tr>
<tr>
<td>in strontium chrome pigment, 509</td>
<td></td>
</tr>
<tr>
<td>Chlorine, in zinc powder, 506</td>
<td></td>
</tr>
<tr>
<td>Chloroform-insoluble matter, in oils, 64</td>
<td></td>
</tr>
<tr>
<td>Chloro-isodindolinone pigment, 159</td>
<td></td>
</tr>
<tr>
<td>Chromate pigments, 154-155</td>
<td></td>
</tr>
<tr>
<td>Chromate treatment, of galvanized steel, 382</td>
<td></td>
</tr>
<tr>
<td>and color matching, 48-49</td>
<td></td>
</tr>
<tr>
<td>instruments for evaluation of, 46-47</td>
<td></td>
</tr>
<tr>
<td>and mixing of pigment and vehicle, 41-43</td>
<td></td>
</tr>
<tr>
<td>visual rating of, 43</td>
<td></td>
</tr>
<tr>
<td>of white pigments, 43, 46</td>
<td></td>
</tr>
<tr>
<td>matching of booth for, 2</td>
<td></td>
</tr>
<tr>
<td>instrumental, 37, 48-49</td>
<td></td>
</tr>
<tr>
<td>metameric, 2-3</td>
<td></td>
</tr>
<tr>
<td>mixing of, 6-7</td>
<td></td>
</tr>
<tr>
<td>Munsell system, 7</td>
<td></td>
</tr>
<tr>
<td>of oils, 63</td>
<td></td>
</tr>
<tr>
<td>test for, 69</td>
<td></td>
</tr>
<tr>
<td>order systems for, 7-8</td>
<td></td>
</tr>
<tr>
<td>specialized, 8-10</td>
<td></td>
</tr>
<tr>
<td>Ostwald system, 7-8</td>
<td></td>
</tr>
<tr>
<td>of plasticizers, 124</td>
<td></td>
</tr>
<tr>
<td>Plocheure system, 8</td>
<td></td>
</tr>
<tr>
<td>of printing ink, 491</td>
<td></td>
</tr>
<tr>
<td>strength of, 492-493</td>
<td></td>
</tr>
<tr>
<td>psychological factors in, 4</td>
<td></td>
</tr>
<tr>
<td>reactions in drying oils, 69</td>
<td></td>
</tr>
<tr>
<td>of resins, 76</td>
<td></td>
</tr>
<tr>
<td>retention of, 391</td>
<td></td>
</tr>
<tr>
<td>in tile-like coatings, 459</td>
<td></td>
</tr>
<tr>
<td>or rosin, 85</td>
<td></td>
</tr>
<tr>
<td>scale for, 10</td>
<td></td>
</tr>
<tr>
<td>of shellac varnish, 421</td>
<td></td>
</tr>
<tr>
<td>of solvents, 145</td>
<td></td>
</tr>
<tr>
<td>standards for, 9</td>
<td></td>
</tr>
<tr>
<td>temperature of, 1-2</td>
<td></td>
</tr>
<tr>
<td>of varnish, liquid, 415</td>
<td></td>
</tr>
<tr>
<td>Colored pigments, 151-159</td>
<td></td>
</tr>
<tr>
<td>hiding power of, 22, 27</td>
<td></td>
</tr>
<tr>
<td>organic, 22, 156-159</td>
<td></td>
</tr>
<tr>
<td>tinting strength of, 43-44</td>
<td></td>
</tr>
<tr>
<td>Colorimetric methods for cellulosate nitrate, 105</td>
<td></td>
</tr>
<tr>
<td>for phthalic anhydride in alkyd resins, 95</td>
<td></td>
</tr>
<tr>
<td>tri stimulus, 12</td>
<td></td>
</tr>
<tr>
<td>subtractive, 6</td>
<td></td>
</tr>
<tr>
<td>Comb tests, for leveling, 209</td>
<td></td>
</tr>
<tr>
<td>Combustion, spontaneous, 364-365</td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td></td>
</tr>
<tr>
<td>color, 9</td>
<td></td>
</tr>
<tr>
<td>flow, 209-210</td>
<td></td>
</tr>
<tr>
<td>surface profile, 266</td>
<td></td>
</tr>
<tr>
<td>Condensation, resistance to, 343-346</td>
<td></td>
</tr>
<tr>
<td>Conductivity cell, for chemical resistance, 352-355</td>
<td></td>
</tr>
<tr>
<td>Cone and plate viscometer, 194</td>
<td></td>
</tr>
<tr>
<td>Congealing point, of waxes, 436</td>
<td></td>
</tr>
<tr>
<td>Consistency cone, 185</td>
<td></td>
</tr>
<tr>
<td>Consistency index, 208</td>
<td></td>
</tr>
<tr>
<td>see also Viscosity</td>
<td></td>
</tr>
<tr>
<td>Consistometer, 200</td>
<td></td>
</tr>
<tr>
<td>Contact angle, 216-217</td>
<td></td>
</tr>
<tr>
<td>in test for cleanliness of steel panels, 379</td>
<td></td>
</tr>
<tr>
<td>Contact area, interfacial, and adhesion, 314-315</td>
<td></td>
</tr>
<tr>
<td>Contact compatibility test, of bituminous coatings, 564</td>
<td></td>
</tr>
<tr>
<td>Contamination (see Adulteration)</td>
<td></td>
</tr>
<tr>
<td>Contrast ratio, and hiding power, 22, 26</td>
<td></td>
</tr>
<tr>
<td>Copal in lac, detection of, 88</td>
<td></td>
</tr>
<tr>
<td>Copper, corrosion of plasticizers, 124</td>
<td></td>
</tr>
<tr>
<td>metallic, in antifouling paints, 480-481, 506, 510</td>
<td></td>
</tr>
<tr>
<td>phthalocyanines, 158</td>
<td></td>
</tr>
<tr>
<td>chemical analysis of, 507</td>
<td></td>
</tr>
<tr>
<td>pigments, 162</td>
<td></td>
</tr>
<tr>
<td>chemical analysis of, 510</td>
<td></td>
</tr>
<tr>
<td>Cork twisting, for indentation hardness, 294</td>
<td></td>
</tr>
<tr>
<td>Corn oil, 53</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

contrast, 15
distinctness-of-image, 16
measurement of, 18, 19
instruments for measurements of, 17–18
of polishes, 440–441
and sheen, 15
specular, 15
evaluation of, 16
measurement of, 17, 18–19
standards for, 19–20
calibration of, 20
material for, 20
of tile-like coatings, 458
Glycerides, in waxes, 439
Gold pigments, synthetic, 156
Goniophotometers, 17
Graske test, of drier metals, 73–74
Gravelometer, 306–307
Grindometer, use of, 234
of colored pigments, 27
basic factors in, 22
of colored pigments, 27
and contrast ratios, 22, 26
definition of, 22
determination of, 22–23, 25, 29, 30
with black glass substrates, 33–34
with cardboard substrates, 32–33
eyearly methods for, 23–25
later methods for, 29–36
Fell equation for, 27
and formulation of paints, 37
Kubelka-Munk theory of, 27–29
applications of, 36–37
Judd graph of, 28–29
of organic pigments, 22
and pigment volume concentration, 26, 35, 36–37
and reflectance versus film thickness, 25–26
and refractive indexes of pigments, 22
of tinted paints, 35–36
and tinting strength, 37–38
of titanium pigments, 34–35, 36–37
and visual sensitivity, 26
of white pigments, 22
of zinc sulfide pigments, 35
Holdout
of architectural paint, 425
of tile-like coatings, 458–459
Hot rolling method, for film preparation, 256
Humidity
affecting glass beads, 469
and blister formation, 341
and color retention of tile-like coatings, 459
and drying time, 269
and flexibility, 333
and heat transfer, 341, 343
and masonry painting, 434–435
test for, 343
see also Moisture
Hydraulic press method, for film preparation, 257
Hydrocarbons
in resins, solubility parameters of, 132
in waxes, 438
Hydrogen sulfide, affecting architectural paint, 427
Hydrometer, 167
for particle size measurement, 223
Hydrophil balance test, for adhesion, 330–331
Hydroxyethylcellulose, 122
Hydroxyl values
of alkyl resins, 103
of oils, 64
Hydroxypropyl methylcellulose, 122–123
Hygrometers
electric, 349–350
hair, 350
salt color-change, 350
Hygroscopic moisture, in pigments, 500
Illuminants, standard, 1
Illuminators-viewers, and rating of dispersion, 234–235
Illuminometer studies, of traffic paint visibility, 470
Immersion tests, of chemical resistance, 351–353
Impact tests
for adhesion, 330
for flexibility, 333–336
for sealant adhesion, 452
for tile-like coatings, 460
Imprint resistance, 294–295
Impurities (see Adulteration)
Indanthrone blue, 159
Indentation hardness, 288–296
and rheology, 291–294, 295
tests for, 288–291, 294–295
and viscosity of organic coatings, 295
Inductance, gage, for film thickness measurement, 265
Inertia tests, for adhesion, 329–330
Influx viscometer, 200
Infrared
radiation, 3–4
spectrophotometry (see Spectrophotometry), 547–549
Ink
printing, 490–493
see also Printing ink
stains from, floor sealer resistance to, 421
Inkometer, use of, 493
Inorganic colored pigments, 154–156
Insect-resistant paints, 370
Inspection gate, for film thickness measurement, 265
Instrumental methods of analysis, 515–581
atomic absorption and flame emission spectroscopy, 550–552
chromatography, 522–542
constant-current coulometry, 560–561
differential thermal analysis, 562–563
infrared spectroscopy, 547–549
mass spectrometry, 553–554
microscopy, 564–571
nuclear magnetic resonance spectroscopy, 564–581
polarography, 556–559
ultraviolet spectroscopy, 545–546
Instrumentation
for color measurement, 10–12
for gloss measurements, 17–18
for mass color evaluation, 46–47
for tinting strength evaluation, 47–48
for viscosity studies, 182–202
Intaglio inks, 490
Integrity, concept of, 388–389
Interfacial forces of adhesion, 314–315
International Standards Organization, 584–585
Inter-Society Color Council, and ISCC-NBS
color system, 8
Iodine value
of lac, 88
of oils, 57–58
Iron
blues, 155
chemical analysis of, 507
in copper pigments, 510
in driers, determination of, 73
oxides, 155–156
black, 160
in magnesium silicate pigment, 503
in red lead, 511
synthetic black, 160, 506
synthetic, chemical analysis of, 509–510
pyrophosphate, as extender, 160
in red pigments, 509–510
in rosin, 85
weathering tests on, 376–382
in zinc powder, 506
Isoindolinone pigments, 159
Isophthalic acid, in alkyd resins, 95–96
Jet abrader, 305–306
Japan wax, properties of, 437
INDEX

Lightfastness of pigments, 411 in chromate pigments, 155
Line patterns, 388
Linseed oil, 53
boiled, detection of, 68
Liquid
Newtonian, 181
non-Newtonian, 181
Lithol red, 157
Lithophone, 150
Livering characteristics, in printing ink, 491
Lumbag oil, 53
Luminograms, ultraviolet, for cleanliness of steel panels, 379

M

Magnesium carbonate, as extender, 160
oxide, in magnesium silicate pigment, 503 panels of, for weathering tests, 383
pickled, for chemical analysis of, 505 Magnetic gages, for film thickness measurement, 267-268
Magnetic resonance spectroscopy, nuclear, 564-568
Magnetic tack tester, 271
Maleic acid, in polyester resins, 97
insoluble matter in, 88
Manganese
in driers, determination of, 72, 73, 74
in red pigments, 509-510
in sienna and umber, 510
Mar resistance, 296-299
and abrasion resistance, 301
impinging abrasive method for, 297-298
miscellaneous methods for, 298-299
scuffing methods for, 299
single scratch methods for, 296-297
Marine environment paints, 478-485
antifouling, 479-481
see also Antifouling paint
Leach test, solvent, 193
Leaching rate, of antifouling paints, 418
Lead
bismuth, in zinc powder, 506
chromate
in ocher, 510
in yellow, orange, and green pigments, 508
in driers, determination of, 72, 73, 74
salt method, for phthalic anhydride in alkyd resins, 94
pigments, 150-151
red, 156, 511
sulpho-chromate, basic, chemical analysis of, 503
in tribasic lead phosphosilicate, 501
white, carbonate, 150, 501
in zinc oxide pigments, 502
Leaching test, for aluminum paint, 417-418
Length, of printing ink, 493
Leveling
of paints, 207-210
in test for sealants, 447
Licata gel test, of metallic soaps, 75
Light
1-12
affecting drying time, 269
reflectance of, 5
resistance to, in printing ink, 491
sources of, 1-4
transmittance of, 5
and particle size measurement, 225-226
Mercuric oxide pigment, 156
chemical analysis of, 511
Mercurey, as substrate for free films, 258
Metal(s)
in driers, determination of, 72-74
stains from, 389-391, 400
weathering tests on, 376-383
Metal-glide adhesion test, of polishes, 441-442
Metallic pigments, 161-162
chemical analysis of, 505
particle size of, 218, 230
Metallic soaps, 71-75
tests on, 74-75
Metallized azo pigments, 157-158
Metamorphism, 2-3
Meters
drying time, 274
indentation, 290
moisture, 348-349
Methylcellulose, 121-122
Mica pigment, chemical analysis of, 503
Microcharacter device, 282-286
Microcolorimetric method, for phthalic anhydride in alkyd resins, 95
Micro-cone and plate viscometer, 194
Microcrystalline wax, properties of, 436, 437
Micro-depth gage, for film thickness measurement, 262
Microindentation testers, 291, 293
Microknife, 283, 316-317
Micrometer, for particle size measurement, 223
Micrometers, for film thickness, 261
Microorganisms
affecting paint, 366-370
resistance to, 426
Mieroradiography, X-ray, for particle size measurement, 235-236
Microscopy, 515-521
electron, 517
of antifouling paints, 481
of particle size measurement, 220
for film thickness measurement, 262-264
light, 515-516
of particle size measurement, 220
for particle size measurement, 220, 517-521
Migration
of flooring ingredients into polish, 441
of oil from sealants, 453
of plasticizers to lacquer, 421
Mildew, 389
Mill, glass, for pigment paste preparation, 42
Mill, paper, for testing of, 482, 484, 485
Mimicry
in alkyd resins, 99, 100
in silicones, 338-340
of impinging abrasive method for, 297-298
miscellaneous methods for, 298-299
scuffing methods for, 298
single scratch methods for, 296-297
Marine environment paints, 478-485
antifouling, 479-481
see also Antifouling paint
Leach test, solvent, 163
Leaching rate, of antifouling paints, 418
Lead
cadmium, in zinc powder, 506
chromate
in ocher, 510
in yellow, orange, and green pigments, 508
in driers, determination of, 72, 73, 74
salt method, for phthalic anhydride in alkyd resins, 94
pigments, 150-151
red, 156, 511
sulpho-chromate, basic, chemical analysis of, 503
in tribasic lead phosphosilicate, 501
white, carbonate, 150, 501
in zinc oxide pigments, 502
Leaching test, for aluminum paint, 417-418
Length, of printing ink, 493
Leveling
of paints, 207-210
in test for sealants, 447
Licata gel test, of metallic soaps, 75
Light
1-12
affecting drying time, 269
reflectance of, 5
resistance to, in printing ink, 491
sources of, 1-4
transmittance of, 5
and particle size measurement, 225-226
INDEX

O

Observer, standard, 4-5
Ochre pigments, chemical analysis of, 509-510
Oils
absorption of
by cement, 430
by pigments, 239-249
by printing inks, 491
bulking values of, 174
chromatography of, 437-438
drying, 53-70
see also Drying oils
fish oils, 53, 68-69
linseed oil, 53, 68
migration from sealants, 453
tall oil, 87-88
see also Tall oil
volatile, in rosin, 86
Oiticica oil, 53, 55

Oxide pigments
black, 159-160
bronze, 161-162
antimony trioxide, 151
aluminum, 161
zinc dibasic aluminate, 156
and acid dye laking, 156
alkaline earth metal, 156
aluminum, 161
analysis of content in paints, 497
antimony trioxide, 151
azo, 156-158
condensation, 158
insoluble, 157
metallized, 157-158
black, 159-160
brass, 161-162
bulking values of, 172-174
chemical analysis of, 500-514
chromate, 154-155
colored, 151-159
copper, 162
corrosion-inhibitive value of, 164
critical pigment volume, 243-247
critical pigment volume, 243-247
dense, 165-171
density, 165-171
oil absorption by pigments, 239-249
particle size measurement, 218-237
specific gravity, 167-170, 177-180
surface energy, 213-217
viscosity and consistency, 181-210

Penetration
of architectural paint, 425
of bituminous coatings, 463
and viscosity of organic coatings, 295
Penetrometer, hardness, 291
for putty and glazing compound, 452
Perilla oil, 53
Perinone orange, 159
Permanent pigments, 49-50
Permeation method, for particle size measurement, 229
Peroxide values, in oils, 65-66
Perspiration, resistance to, 353
in varnish, 421
Persyline scarlet, 159
pH
of electrocoating, 486
of pigments, 500
of polishes, 440
Phenolic resins, 110-111
alkyd, 100
solubility parameters of, 132
Phenols, in plasticizers, 126
Phthalocyanines, 158
Phthalates, in plasticizers, 126
Philoscope, use of, 491
Phosphates
as extenders, 160-161
for treatment of galvanized steel, 382
Phosphorus
in plasticizers, 126
in tribasic lead phosphosilicate, 502
Photochemical embrittlement test, 410
Photographic illuminator-viewer, and rating of dispersion, 234-235
Photography, for traffic paint visibility studies, 471-472
Photometry
for iron in rosin, 85
for particle size measurement, 225-227
for traffic paint visibility studies, 471
Phthalates, in plasticizers, 126
Phthalic anhydride
in alkyd resins, 93-95, 100, 102
in lacquers, 94-95
Phthalocyanines, 158
Physical properties, 165-250
bulking values, 172-176
density, 165-171
of polishes, 440
INDEX

Resin(s)
- acid-bound, for coating of galvanized steel, 382
- acrylic, 114–115
- solubility parameters of, 132
- acrylonitrile, 108–109
- alkyd, 92–103
- acid value of, 102
- alcohols in, 98
- benzoguanamine-formaldehyde in, 99, 100
- benzoic acid in, 95–96
- carboxylic acids in, 93–97
- cellulose nitrate modification of, 101–102
- chloric acid in, 96–97
- fatty acids in, 97
- Gibr's test of, 100–101
- hydroxyl value of, 103
- identification of, 92–93
- isopthalic acid in, 95–96
- melamine-formaldehyde in, 99, 100
- nitrite test of, 101
- phenol-formaldehyde in, 100
- p-phenylphenol-formaldehyde test of, 101
- phthalic anhydride in, 93–95, 100, 102
- polycrylonitrile modification of, 101
- poly(vinyl chloride-acetate) modification of, 101
- rosin in, 98
- silicone modification of, 101
- solubility parameters of, 132
- styrene-modified, 98
- terephthalic acid in, 95–96
- unsaponifiable matter in, 102
- urea-formaldehyde in, 98–100
- amine, solubility parameters of, 132
- bituminous (see Bituminous coatings)

bulkling values of, 81, 174
- cellulose, 103–106
- cellulose esters in, 104
- cellulose ethers in, 104
- cellulose nitrate in, 104–106
- classification of, 103
- colorimetric studies of, 105
- Grib test for, 103
- identification of, 103
- infrared studies of, 103–105
- spectrometry of, 103
- volumetric studies of, 104–105
- chromatography of, 538–539
- color test for, Brinker, 69
- drip point of, 81
- epoxy, 111–112
- solubility parameters of, 132
- hydrocarbon, solubility parameters of, 132
- identification of, 76–77, 498
- lac, 88–90
- see also Lac
- miscibility with solvents, 130–131
- natural, 76–90
- acid value of, 84
- ash content of, 84
- bulkling value of, 81, 174
- classification of, 76
- commercial grades of, 77–78
- dirt in, 81–84
- hardness of, 78
- identification of, 76–77
- moisture content of, 84
- nonvolatile content of, 81
- refractive index of, 78
- saponification value of, 84
- softening point of, 79–81
- solubility of, 81, 82–83
- nitrogen, 106–110
- benzoguanamine-formaldehyde in, 106–107
- detection of, 106
- melamine-formaldehyde in, 106
- thiourea content of, 107–108
- thiourea-formaldehyde in, 107
- p-toluenesulfonylamide-formaldehyde in, 110
- urea content of, 107
- urea-formaldehyde in, 107
- phenolic, 110–111
- alkyd, 100
- solubility parameters of, 132
- polyamide content of, 109
- polystyryl, 92–103
- acids in, 97
- solubility parameters of, 132
- polyurethane, 109–110
- rosin, 84–87
- see also Rosin
- silicone, 112–113
- solvents for, 130
- synthetic, 115
- identification of, 92
- tall oil, 87–88
- vinyl, 113–114
- Resinates, 71
- Resistance
to abrasion, 301–312
to chemicals, 351–354
to heat, 361–365
mar, 296–299
to microorganisms, 366–370, 426
to slipping, in polishes, 442–443
to water vapor and liquid, 310, 341–350, 351
to weathering, 371–414
- Rheology, 181
- indentation, 291–294, 295
and properties of architectural paint, 424
and properties of sealants and caulking comp­ounds, 446, 447–448
- Rheometer, indenting, 293–294
- Rice bran wax, properties of, 437
- Rheology, 181
- Resistance
to abrasion, 301–312
to chemicals, 351–354
to heat, 361–365
mar, 296–299
to microorganisms, 366–370, 426
to slipping, in polishes, 442–443
to water vapor and liquid, 310, 341–350, 351
to weathering, 371–414
- Selenite, 265
- Seals, 445–454
- adhesion of, 449–452
- aging tests on, 453–454
- chemical analysis of, 454
- compression set of, 453
- hardness of, 452–453
- oil migration from, 453
- rheological properties of, 446, 447–448
- stability of, 454
- stain tests of, 454
- tack-free time of, 448
- working properties of, 445–447
- Sealers, floor, tests on, 421
- Seamless floor testing, 460–461
- Sediment, in polishes, 439
- Sedimentation, for particle size measurement, 222–225
- Selenium, with cadmium colors, 155

Salt fog test, of chemical resistance, 353–354
- Sampling
for analysis of whole paint, 495–496
for chemical analysis of pigments, 500
for plasticizers, 125
for resins, 84–85
- Sand, falling, in abrasion tests, 302, 303
- Saponification value of rosin, 86
- oils, 56–77
- of resins, 84
- of rosin, 86
- of tall oil, 87
- of waxes, 438
- Sawdust method, for spontaneous combustion test, 364
- Sealing, 388
- Scarlet, perylene, 159
- Scheifele evaluation of weathering, 393
- Schlyter test, for fire retardance, 359
- Scraping
of steel test panels, 381
of lac, 90
of oils, 56–77
of resins, 84
of rosin, 86
of tall oil, 87
of waxes, 438
- Scratch dynamometer, 283
- Scratch gage, for film thickness measurement, 265
- Scratch hardness, 281–284
- Scratch resistance, 282
- Scratch testers, 282, 283, 297, 298, 321–322, 323
- for mar resistance, 296–299
- Scratching tests of adhesion, 319–323
- Scratchmaster, 321
- Scrub resistance, of architectural paint, 428
- Scrubbability, of tile-like coatings, 460
- Scuffing methods, for mar resistance test, 298
- Sealants, 445–454
- adhesion of, 449–452
- aging tests on, 453–454
- chemical analysis of, 454
- compression set of, 453
- hardness of, 452–453
- oil migration from, 453
- rheological properties of, 446, 447–448
- stability of, 454
- stain tests of, 454
- tack-free time of, 448
- working properties of, 445–447
- Sealers, floor, tests on, 421
INDEX

Selflifting of varnish films, resistance to, 420

Separation
of pigment and vehicle, in analysis of whole paint, 498
of solvent, in analysis of whole paint, 499
Service performance, and abrasion resistance, 301–302
Set time, of cement, 430
Set-to-touch drying time, 269
Setting characteristics, of bituminous emulsions, 466–467
Setting test, of roof coatings, 465–466
Shadow method, for contact angle determination, 216
Shear/scratch tester, 282
Shear tests
of adhesion, 325–326
of bond strength of sealants, 450
Shearing adhesiveness, of putty, 447
Shellac varnish
Shellac varnish
Shells, 161
Shellac pigments, 156
Silica
in diatomaceous silica, 503
as extender, 160
in lead silico-chromate, 508
in magnesium silicate pigment, 503
in pigments, 439
in red lead, 511
in titanium pigments, 501
in tribasic lead phosphosilicate, 501
Silicate pigments, 156
alumina, 503
silica, 503
white lead, basic, 510
Silicates, as extenders, 161
Silicone resins, 112–113
alkyd, 101
Silvered glass, as substrate for free films, 259
Skinning
of architectural paint, 423
of varnish, 418
Slip resistance, of pigments, 442–443
Slump tests, of sealants, 477–478
Smog chambers, 414
Smokin Joe oven test, of varnish films, 420
Smoothness, of tile-like coatings, 458–459
Soap titration method, for particle size measurement, 229
Soaps, metallic, 71–75 properties of, 71
tests on, 74–75
Sodium sulfide resistance, of glass beads, 469
Softening, of tile substrate, from polishes, 442
Softening point
of bituminous coatings, 463
of resins, 79–81
of wax, 436
see also Melting point
Solidification point, of plasticizers, 125
Solubility
of cellulose nitrate, 120
of resins, 81, 82–83
of solvents, 130–131, 135
Solute absorption, and particle size measurement, 228–229
Solvency, 130–135
and aniline point, 132–133
and tauri-butanol value, 133–135
and solubility parameters, 130–131, 135
and viscosity reduction, 131–135
Solvent(s), 130–149
acid absorption, 143–144
acidity and alkalinity of, 146–147
in bituminous coatings, 464–466
boiling point of, 139–140
bromine number for, 143–144
bulking values of, 175
chromatography of, 141–143, 535–537
for cleaning of metals, 378–379, 382
color of, 145
composition of, 141–145
density of, 145
dilution limit of, 145
dilution ratio of, 135
evaporation of, 135–141
flash point of, 140–141
identification and analysis of, 147–149
impurities of, 145–147
leach tests on, 163
mixtures of, 131
nonvolatile residue in, 146
odor of, 146, 147
physical properties of, 145
refractive index of, 145
refractivity intercept for, 145
specifications for, 130–131, 135
solvents and viscosity reduction, 131–135
solvents and solubility parameters, 130–131, 135
solvents and kauri-butanol value, 133–135
solvolysis of, 130–131, 135
solidification point, of plasticizers, 125
specifications, 583–585
American National Standards Institute, 585
ASTM, 584
Bureau of Reclamation, 584
Coast Guard, 584
Corps of Engineers, Civil Works, 584
Department of Defense, 583–584
departmental, 583
federal, 583
International Standards Organization, 584–585
Maritime Administration, 584
National Paint, Varnish, and Lacquer Association, 584
Society of Paint Technology, 584
State Highway, 584
Steel Structures Painting Council, 584
Tennessee Valley Authority, 584
Spectrophotometry, 10–12
for acrylic resins, 114
for cellulose nitrate in alkyd resins, 101–102
for cellulose resins, 103
mass, 535–534
for phthalate in alkyd resins, 102
Spectroscopy
for binder identification, 498
flame emission, 550–552
irradiated, 547–549
nuclear magnetic resonance, 564–581
applications of, 571–577
interpretation of, 567–571
twist of, 565–567
of traffic paint, 475
ultraviolet, 545–546
Specular gloss (see Gloss, specular)
Spermaceti wax, properties of, 437
Spinning, for preparation of films, 257
Spot tests
of bituminous coatings, 462–463
of chemical resistance, 351
Spotting, water, of polishes, 440
Spray, for preparation of films, 251
Spraying, for preparation of paint, 424
Spreader, for film preparation, 253
Spring scale pull-off test, of adhesion, 324
Stability
of bituminous emulsions, 466, 467
of driers, 72
of pigments, 439–440
of sealants, 454
of traffic paint, 468
Stains
from caulking compounds and sealants, 454
ink, resistance of floor sealers to, 421
metal, 389–391, 400
resistance to, 351–354
in architectural paint, 428
in tile-like coatings, 459
from rubber, 351
rust, 389–391, 395–397
Stearic acid, 439
Stearic acid, in waxes, 439
Steel panels for weathering tests, 376–382
Steel structures for weathering tests, 376–382
blast cleaning of, 381–382
and cleanliness of surfaces, 379–380
galvanized, 382
pictorial standards for surfaces to be painted, 380–382
preparation for painting, 382
scraping and wire brushing of, 381
substrates for, 376–379
Stick and wick test, for fire retardancy, 356–357
INDEX

Temperature
 color, 1–2
 differential thermal analysis, 562–563
 and drying time, 269
 effects on varnish, 421
 and flexibility, 333, 336
 of sealants, 449, 451
 freeze-thaw stability of architectural paint, 426
 in sudden chill test, 411
 see also Heat

Tencity, of caulking compound, 449

Tensile adhesiveness
 of putty, 449
 tests for, 323–326

Tensile strength
 and abrasion resistance, 301
 and elongation, 338–340

Tensimeter, for leveling studies, 207–208

Tension, surface, 213–214
 measurements of, 214–216

Terephthalic acid, in alkyl resins, 95–96

Test panels (see Panels for testing)

Thermal analysis, differential, 562–563

Thickness of film, measurement of, 260–267

Thiocyanate value, of oils, 60–61

Thionoligido maroon, 159

Thiourea, in nitrogen resins, 107–108

Thiourea-formaldehyde, in nitrogen resins, 107

Thixotrometers, 202

Thioxtropy, 181

Throwing power, of electrocoating paints, 487

Tidal conditions, simulation of, 411

Tide range exposure tests, 478

Tie-line coatings, 456–460

ability to smooth concrete block, 457–459
 abrasion resistance of, 460
 adhesion tests of, 456–457
 chemical resistance of, 459
 color retention of, 459
 hardness of, 460
 humidity affecting, 459
 specifications for, 456
 stain resistance of, 459
 washability of, 459–460

Tile substrate, softening from polishes, 442

Tilt plate method, for contact angle determination, 216

Tinted paints, reflectance and hiding power of, 35–36

Tinting strength, 41–50
 basic factors in, 41
 and color matching, 48–49
 of colored pigments, 43–44
 determinations of, 44, 45, 46
 and hiding power, 37–38
 instruments for evaluation of, 47–48
 and lightness, 48
 and mixing of pigment and vehicle, 41–43
 and pigment concentration, 48
 of titanium pigments, 45
 and tone, 48
 visual rating of, 43–46
 of white pigments, 44–45, 47
 of zinc oxide pigments, 45

Tintograph, 44

Tintometer, 9

Tinctorial pigments, 150

Titanate pigments, 156

Titanium dioxide, in zinc sulfide pigments, 502

Titanium pigments, 150
 chemical analysis of, 500–501
 hiding power of, 34–35, 36–37
 tinting strength of, 45

Toluene dilution ration of cellulose nitrate, 120

p-Toluenesulfonylamine-formaldehyde, in nitrogen resins, 116

Toluidine red pigments, 157

chemical analysis of, 511

"Tombstone" test, of masonry paints, 432–433

Tooth gages, for wet film thickness, 261

Torque tests, of adhesion, 326

Touch controller, for drying time determination, 276

Traffic paint, 468–477
 abrasion resistance of, 312, 472–473
 adulteration of, 474–477
 bleeding resistance of, 473
 chipping of, 473–476
 flexibility of, 470
 and glass beads testing, 468–469
 night visibility of, 470–472
 no-pick-up time for, 469–470
 road tests of, 473–474
 schedule of tests for, 468
 stability and settling properties of, 468
 water resistance of, 473
 weathering tests of, 473

Transmission
 of light, 5
 and particle size measurement, 225–226
 of ultraviolet radiation, by pigments, 163
 of water vapor, 341–343

Trimmers, in bodied oil, 68

Tristimulus colorimeters, 12

Tung oil, 85

adulteration of, tests for, 66–68

optical dispersion of, 62–63

Tunnel tests, of fire retardance, 360–361

Turbosviscometer, 190

Twisting cork tester, for indentation hardness, 294

Typographic inks, 490

U

Ultracentrifuge
 for adhesion test, 329–330
 sedimentation by, 225

Ultramarine blue, 156

chemical analysis of, 508

Ultrasonic vibration test, for adhesion, 329

Ultraviolet luminograms, for cleanliness of
 Panels for testing)

Ultraviolet radiation, 3
 ability to smooth concrete block, 457–459
 and color matching, 48–49
 humidity affecting, 459
 optical dispersion of, 62–63
 and particle size measurement, 225–226
 of water vapor, 341–343

Urea, in nitrogen resins, 107

Urea-formaldehyde, in nitrogen resins, 107

Uretic acid, 156

Ultrasoundic spectroscopy, 545–546

Umbre pigment, 156

chemical analysis of, 509–510

Uniformity, of bituminous emulsions, 466

Unsaturation, in fats and oils, 57–61

Unsaponification, in alkyd resins, 98–100

Untan, in nitrogen resins, 107

Unta-formaldehyde
 in alkyl resins, 98–100
 in nitrogen resins, 107

Unreathen materials, in resins, 109–110

V

Varnish
 clear floor sealer tests of, 421
 dry film, 419–421
 hardness and abrasion resistance of, 421
 irregularities in, 419–420
 plasticizer migration to, 421
 resistance to perspiration, 421
 rubbing property of, 420–421

INDEX

selflifting of, 420

temperature change resistance of, 421

liquid, 415–419

acid value of, 419

alkali increase test of, 419

appearance of, 415

color of, 415

density of, 417

drying time of, 419

elasticity of, 417

flash point of, 417

leaching test of, 417–418

nonvolatile content of, 415–417

reactivity tests of, 418–419

rotoviscosity of, 418

viscosity of, 415

shellac (see Shellac varnish)

test on, 415–421

Vat dyes pigments, 158–159

Vehicle separation from paints, for analysis, 498

Venetian red, chemical analysis of, 509–510

Vehicle separation from paints, for analysis, 498

Volumeter, 169

Volumetric methods

Volumetric methods for cellulose nitrate, 104–105

for phthalic anhydride in alkyd resins, 94

W

Washability

of architectural paint, 427–428

of tile-like coatings, 459–460

“Washing” of paints, 392–393

Water

adsorption of vapor, and particle size measurement, 228

analysis in paint, 497–498

in bituminous coatings, 465

effects on paint (see Moisture)

liquid jet test of adhesion, 328

Water-break test, for cleanliness of steel panels, 379

Water-emulsion waxes, 439–440

Waterproofing, with cement-base paint, 433–434

Waxes, 436–444

acid value of, 438

congealing point of, 436

crystallinity of, 438

emulsion-type, 438–440

glycerides in, 439

hydrocarbons in, 438

lac in, 90

melting point of, 436

rosin in, 439

saponification value of, 438

solvent-type, 439–440

specific gravity of, 438

stearic acid in, 439

Wear tests, 307, 309–310

Weatherometer, 303

Weathering, 371–414

on aluminum, 382–383

and appearance, 384

application of paints in tests of, 373

artificial, 405–414

and actinic values, 410

intensified tests in, 410–412

machines for 405–410

of sealants, 453–454

and blistering of paint, 391–392, 398–399

and chalking, 384–387

and checking and cracking, 387–388

and color retention, 391

critical performance index in tests of, 394

dark paint, 35

dew detectors, 392, 408

and dirt and mold retention, 389

and effects of climate, 371

and effects of moisture (see Moisture)

evaluation of tests of, 383–392

and exposure test record, 401–402

and flaming, scaling and peeling, 388

and flexibility tests, 356–357

and integrity, 388–389

on iron and steel, 376–382

on magnesium, 383

on masonry, 383

and metal stains, 389–391, 400

natural, 371–404

nomographs for tests of, 393, 403–404

and pigment characteristics, 164

and protection, 389

racks for tests of, 371–373

recording of tests for, 393

and rust stains, 389–391, 395–397

Scheifele summary of tests for, 393

of traffic paint, 473

and “washing” of paints, 392–393

on wood, 373–376

Weather-Ometers, 406–407, 408

Wedge test, liquid, for adhesion, 328–329

Weight per gallon, 166

Wet-abrasion machine, 310–311

Wet-edge time, of architectural paint, 424

Wet feet test, for concrete paint, 431

Wet film gage, 260

Wet film thickness, 260–261

Wet flow, of bituminous emulsions, 466

Wet point, 249

Wetting, 213

Wheel, for artificial weathering, 405–406

White lead, carbonate, 180, 501

White pigments, 159–151

chemical analysis of, 500–503

in mixed pigments, 504–505

hiding power of, 22

mass color of, 43, 46

tinting strength of, 44–45, 47

Window adhesion test, 320

Wire brushing, of steel panels, 381

Wood

adhesion test on wood cross, 324

fire retardance of shingles, 355

weathering tests on, 373–376

Working properties

of architectural paint, 424

of caulking compounds, 445–447

of putty, 445–447

of sealants, 445–447

Worn areas, restored with clear floor sealers, 421

X

Xanthylol test, for urea-formaldehyde in nitrogen resins, 107

X-ray microradiography, for particle size measurement, 235–236

X-ray scattering, for particle size measurement, 227

Y

Yellow oxides, 156

anthrapyrimidine, 159

chemical analysis of, 508–510

chromium, 154

diarylhydride, 157

nickel azo, 158

Yellowness index, of architectural paint, 428

Yield

liquid and pigment tables of, 177–180

of paint formula, 171, 176

Z

Zapon tester, for drying time, 270–271

Zinc

in copper pigments, 510

in driers, 73, 74

oxide, in zinc powder, 506

phosphate, as extender, 161

in red lead, 511

Zinc pigments, 150, 162

chromate, 155

oxide

chemical analysis of, 502

tinting strength of, 45

sulfide

chemical analysis of, 502

hiding power of, 35

yellow, chemical analysis of, 509