Index

A

Acoustic emission, 205–223
Aluminum
 2014-T651, compact tension specimens of, 12
 2124-T851, specimen size effects on K_e, 123
 6061-T651, specimen size effects on K_e, 124
 7075-T651, K_e for, 107
 7079-T6, comparison of compact tension and chevron notch for, 25
 7475-T7351, specimen size effects on K_e, 125, 248, 255–268
Aluminum alloys
 Comparison of test methods for, 193–204
 Short-bar toughness for, 237–254
Aluminum oxide, fracture toughness of, 270–280
ASTM Standard B 276, 284, 298
ASTM Standard B 645, 241
ASTM Standard B 646, 237, 252
ASTM Standard D 2264, 159
ASTM Standard D 2936, 159
ASTM Standard E 112, 272
ASTM Standard E 399, 7, 14, 33, 102, 177, 188, 194, 237–238, 255, 273
 Comparison for aluminum, 12
 Specimen geometry requirements, 118
 ASTM Standard E 561

B

Baratta, Frances J., Ed., 1, 339
Barker, L. M., 117, 324
Bar-On, I., 98
Beech, J. F., 152
Bluhm slice model, 9, 28, 101, 176, 318
Boundary integral method, 22, 38, 69–79
 Equations for, 71
 Brass (60/40), K_e for, 107
 Brown, K. R., 237
 Buhr, M. L., Jr., 134

C

Cemented carbides (see Tungsten carbide)
 Chevron notched bend bars
 Comparison of analytical and experimental K_i calculations, 98–112
 K_e on glass, 167–175
 Polymer concrete, 310–322
 Stress intensity factor for, 25
 Chen Tzeguang, 193
 Chona, R., 81
 Chuck, L., 167
Compact tension specimens
 Aluminum alloys, 12, 255–268
 Comparison with chevron-notched specimens, 193–204
 Westerly granite, 160
Coyle, R. T., 134
Cutler, R. A., 281

Double cantilever beam specimen,
 149, 330

Elastic-plastic analysis, 121
Electrodischarge machining, 184, 303
Eschweiler, J., 255

Finite element technique, 22, 32–48, 49–67
Flat jack (see also Fractometer), 41, 119, 131, 147, 305
Fractometer, 119, 306
Freiman, Stephen W., Ed., 1, 167, 339
Fuller, E. R., Jr., 167, 309

Glass ceramics, 329
Gunsallus, K. L., 152

Han, T.-Y., 49
Hastelloy C-276, bonding to glass ceramic, 320
Hayes, G. A., 205
Hong, J., 297
Huang, Y.-P., 49

Indiana limestone, K_{ic} of, 159
Ingraffen, A. R., 49, 152
Inhomogeneities, effect on toughness variations in aluminum, 252
Interfaces, toughness of ceramic metal, 324–335
Irwin-Kies relation, 177

Jones, D. P., 281

Krause, R. F., Jr., 309

Marci, G., 255
Mecholsky, J. J., 324
Mendelson, A., 69
Microstructure, of steels, 209–210
Molybdenum, bonding to glass ceramic, 329
Munz, D. G., 255, 270

Nelson, D. P., 152
Newman, J. C., Jr., 5, 32
P

Perucchio, R., 49

Photoelastic techniques, 81–96

Model for, 82

PMMA, \(K_{ic} \) for, 107

Poisson’s ratio, effect on compliance, 47

Polymer concrete, toughness of, 309–322

Pook equation, 8, 25–29, 109, 118

R

Raju, I. S., 32

Residual stresses, due to finishing, 292

Rising crack growth resistance curve, 26

Aluminum, 245

Aluminum oxide, 274–280

Polymer concrete, 319–322

Schematic of, 27

Rocks, fracture toughness testing of, 152–165

Roman, I., 98

S

Sakai model, 101

Sanford, R. J., 81

Schwartzkopf, P., 297

Shannon, J. L., Jr., 270

Short-bar specimens, 11

Aluminum, 270–280

Boundary integral method applied to, 69–79

Dimensions for, 34

Finite element analysis of, 32–38

Photoelastic calibration of, 81–96

Toughness of aluminum alloys from, 193–204, 237–254, 255–268

Toughness of ceramic-metal interface using, 330

Toughness of steels from, 193–204

Short rod specimens, 11

Acoustic emission from, 205–223

Dimensions for, 34, 118

Experimental analysis for, 14, 15

Finite element analysis of, 32–48, 49–67

For aluminum oxide, 270–280

For testing of rocks, 152–165

For tungsten carbides, 281–295, 297–307

Of polymer concrete, 310–322

To determine \(K_f-V \) curve, 135–150

Toughness of steels from, 193–204

Shumaker, C. A., Jr., 281

Single edge notch bend test, 159, 303

Slow crack growth

Determination of, 135–150

Effect on \(K_{ic} \), 174

Specimen size

Effects on measured fracture toughness, 117–131

Limitations for \(K_{ic} \) determination, 253

Stainless steel (17-4), specimen size effects on \(K_{ic} \), 126

Steel

15-5 PH, \(K_{ic} \) and acoustic emission, 217

4140, hardened, \(K_{ic} \) for, 107

4340, specimen sizes effects on \(K_{ic} \) for, 126

A151-440C, \(K_{ic} \) and acoustic emission, 217

A151-4140 \(K_{ic} \) and acoustic emission, 217

D6AC, \(K_{ic} \) and acoustic emission, 217

GCr15 bearing, 187

Steel alloys, comparison of test methods for, 193–204

Stokes, J. L., 205
Straight through crack assumption, 8, 100, 169, 178, 194–196, 315
Stress intensity factor, 37
 Calculation by photoelastic techniques, 89
 Calculation for chevron notched bend specimen, 98–111
Calculation from finite element analysis, 58
Calculation using boundary integral method, 74–77
Calculation using compliance technique, 181–187
Variation along crack front, 62

Titanium (Ti-6Al-4V), specimen size effects of K_i, 127
Tuler, F. R., 98
Tungsten carbide-cobalt alloys, fracture toughness of, 281–296, 297–307
Tunnel boring machine, 152

U
Underwood, John H., Ed., 1, 339

W
Wang Chichi, 193
Westerly granite, K_i of, 159
Work of fracture test, 7, 17
Wu Shang-Xian, 176

Y
Yuan Maochan, 193