Index

A

Absorber coatings, 263, 282
Accelerated aging, 304, 306, 316–318, 324, 326, 333
Accelerated testing chamber, 324, 334, 335
Acicular ferrite, 150, 217–218, 222
Acrylic film, see Korad
Alloy steel
 Caustic cracking, 107
 Cosegregation, 143
 Crack morphology, 116
 Effect of oxygen, 144
 Effect of phosphorus, 112
 Effect of potential, 143
 Electrochemical tests, 109
 Passivation rates, 113
As-cast structures, columbium-titanium precipitates, 242–243
As-rolled structures, columbium-titanium precipitates, 244, 246
Auger sputtering, 269
Austenite
 Grain growth
 In reheating, 234
 In heat-affected zone (HAZ), 240
 Prior grain size, effect on
 Heat-affected zone (HAZ) toughness, 240, 242
 Sulfide stress cracking, 180–182

B

Bainite
 Influence on sulfide stress cracking, 183–184
 Ultralow carbon bainite (ULCB) steels, 153
Black chrome coatings, 264, 265, 266, 284, 290
 Areal density measurements, 269
 Chloride ion effect, 265, 268–269, 280
 Composition, 269–270
 Emittance, 264
 Graded index, 341
 Microstructure, 265–268
 Thermal stability, 264–268, 341
Blading
 Penultimate (L-1) row, 10
 Titanium, 10
Boron, effect on ultralow carbon bainite (ULCB) structure, 153

C

Carbon, effect on weld toughness, 212
Casing, sulfide stress cracking of, 172
Caustic cracking, 59, 66, 107
Cermet coatings, 283–284, 292, 294–295
Chrome-molybdenum steel plate
Composition, 123, 135
Effect of gage, 135
Effect of silicon, 144
Ideal diameter, 123, 126
Jominy test, 124, 126
Microstructure, 128, 133
Strength, 127, 131
Chromium/chromic oxide (Cr$_2$O$_3$), 269, 272–274
Cleavage resistance, 228
Controlled rolling, 152–153, 161, 230, 233–235
Cooling rate, effect on sulfide stress cracking
After austenitizing, 182–185
After tempering, 193–202

D
Dark-field microscopy, 303, 306–308, 311, 313
Degradation mechanisms
In mirrors, 299–301, 316–318
In polymers, 323–336
Dual-phase structure, 157, 161

E
Edge corrosion of mirrors, 317
Electrodeposited coatings, 264
Electroplating, process variables, 264–265, 268, 340
Emittance, 264, 288–289

F
Fatigue strength, 11
Flow stress during hot rolling, influence of titanium, 234–235
Forced outage, 9, 10
Fracture strength, 37, 48

G
Grain growth, effect of titanium nitride on
In heat-affected zone, 240
In reheating, 153, 234, 260

H
Heat-affected zone (HAZ)
Crack opening displacement (COD) toughness, 233, 240, 242
Effect of titanium on toughness, 240
Instrumented impact toughness, 233, 242
Microstructure, 240, 246, 248, 257
Precipitate composition (niobium-titanium), 248
Simulation, 233
Hot working, effect on sulfide stress cracking, 177–178
Humidity, see Moisture aging
Hydrogen embrittlement
Atomistic approach, 140
Effect of impurities, 47
Inclusions, 139
Model, 51
Strength, 139

I
Inconel
Caustic cracking, 59, 66
Effect of boron, 142
Effect of copper, 67, 141
Effect of silica, 71, 141
Grain boundary composition, 65–66
Mechanical properties, 62–63
Microstructure, 62, 64
Polarization curve, 76
Stress corrosion cracking, 59, 66
Thermal treatment, 61
U-bend, 140
Instrumented impact tests, 233, 242
Intergranular cracking
- Effect of metalloids, 39
- Fracture strength, 48
- Hydrogen induced, 47
- Impurities, 27, 37
- Inclusions, 139
- Micromechanism, 34
- Models of, 51

J
- Jominy test, chrome-molybdenum plate, 124, 126

K
- Korad, 328, 329, 336

L
- Light scattering, 307, 308, 314, 317-318

M
- Macroscopic toughness, 42
- Magnetron sputtering, 284
- Manganese, effect on weld toughness, 212
- Martensite, influence of sulfide stress cracking on, 183-185
- Matrix approach to testing mirrors, 299-301, 302, 304, 317-318
- Metal oxide multilayer coatings, 284, 287-288, 295
- Microscopic toughness, 42
- Microstructure
 - Of black chrome coatings, 265-268
 - Of chrome-molybdenum plates, 128, 133
 - Of Inconel, 62, 64
 - Of mirrors, 307, 308, 310-313
 - Of retaining ring alloy, 84
 - Of Ti-6Al-4V alloy, 13, 19

Mirrors
- Accelerated aging, 304, 306, 316, 318
- Characterization of, 303, 306-309, 316, 318
- Dark-field microscopy, 303, 306-308, 311, 313
- Degradation mechanisms, 299-301, 316, 318
- Edge corrosion, 317
- Light scattering, 307, 308, 314, 317-318
- Matrix approach to testing, 299-301, 302, 304, 317-318
- Microstructure, 307-308, 310-313
- Moisture aging, 301-302, 304, 317
- Optical properties, 303, 307-318
- Polymer, 322
- Reflectance, 308, 315-318
- Thermal aging, 301-302, 304, 306, 317
- Molybdenum, effect on
 - Sulfide stress cracking, 185
 - Weld microstructure, 218
 - Weld toughness, 212

N
- Nickel, effect on dual-phase structure, 161
- Niobium, effect on
 - Stress relief embrittlement, 157
 - Titanium nitride precipitation, 252-253
 - Weld microstructure, 218, 222
 - Weld toughness, 212-213, 217
- Nitrogen, effect on weld toughness, 217

O
- Optical modeling, 270-279, 341
Optical properties of
Black chrome coatings, 264–265, 268–269, 277, 341
Mirrors, 303, 307–308
Sputtered coatings, 287–289, 293–295

P
Passivation rates, 113
Photodegradation, 321, 323–324, 333–334
Photostability, 323–324, 333–334
Photothermal degradation, 333–334
Photovoltaic modules, 321
Polycarbonate, 322–323, 329, 332–333, 336
Polymers, 321–322
Polymethyl methacrylate, 322, 323, 325, 335–337
Precipitation of carbonitrides in steel, 242–244, 246, 248, 258

R
Reactive sputtered coatings, 292
Reflectance, 303, 307–308
Reflectors, see Mirrors
Retaining ring alloy
 Aging kinetics, 95
 Composition, 82, 94
 Desired properties, 80
 Environmental behavior, 88, 98
 Fracture mode, 91, 101
 Hardness, 86
 Heat treatment, 83
 Microstructure, 84
 Physical properties, 100
 Strength, 87, 97
 Toughness, 87, 97

S
Selective absorber coatings, 264, 282–283
Silver glass mirror, 304
Slab reheating temperature, effect of
 On austenite grain size, 153, 234
 On microstructure of rolled plate, 153, 161
 On strength and toughness of ultralow carbon bainite (ULCB) steel, 161
Solar coatings, see Absorber coatings,
 Black chrome coatings, Cermet coatings, Chromium/chromic oxide (Cr2O3), Electrodeposited coatings, Magnetron sputter-ing, Metal oxide multilayer coatings, Reactive sputtered coatings, Selective absorber coatings, Sputtered coatings
Solar energy, 263, 282, 298, 320
Solar reflectors, see Mirrors
Sputtered coatings, 283
Stress-corrosion cracking (SCC)
 Inconel, 59
 Low-alloy steel, 104
 Slip-dissolution model, 105
Sulfide stress cracking (SSC), influenced by
 Cooling rate
 From austenitizing temperature, 182–185
 From tempering temperature, 193–202, 259
 Hot working, 177–178
 Molybdenum, 185
 Prior austenite grain size, 180–181
 Temper embrittlement, 193–202
 Yield strength, 184
Tedlar, 335–336, 338–339
Temper embrittlement, 193–202
Tempering temperature, effect on sulfide stress cracking, 185–193
Thermal aging
 Black chrome, 265
 Mirrors, 301–302, 317
 Sputtered coatings, 283, 287, 290, 293, 295
Thermal cycling of mirrors, 301–302, 304, 306, 317
Ti-6Al-4V alloy
 Bimodal structure, 14
 Crack growth rate, 15
 Fatigue strength, 15
 Forging, 28, 29
 Microstructure, 13, 19
 Physical properties, 12
 Pole figure, 25
 Tensile properties, 13
 Texture, 17
Titanium nitride, effect on
 Plate strength, 236, 238
 Plate toughness, 238, 240

U
U-bend testing of Inconel, 140
Ultraviolet
 Absorber/quenchers, 322, 324, 328, 329, 332, 335
 Screeners, 324
 Stabilizers, 322

V
Vacuum deposition, 283
Vanadium, effect on
 Stress relief embrittlement, 157
 Weld toughness, 212–213, 217

W
Weather-Ometer, 304, 318
Weld toughness, influenced by
 Carbon, 212
 Manganese, 212
 Microstructure, 222
 Molybdenum, 212
 Niobium (columbium), 212–213, 217
 Nitrogen, 217
 Reheating, 222