Index

A
Alpha brass, 3-28
Apparent porosity, 66
Austenitization, 156-158

B
Brinell hardness, 5-9

C
Cahn-Hagel growth rate, 147
Carbides, 65-66
Cast iron, 168
Cemented carbides, 65
Cleanliness, 144
Coalescence probability, 33
Coincidence site boundaries, 31
Compression testing, 45
Confidence limit, 123
Considère criterion, 48
Contiguity, 71
Copper/iron alloys, 30
Copper/nickel alloys, 41
Copper/silver alloys, 30
Copper/tin alloys; 41
Copper/zinc alloys, 5, 41
Counting methods
 Intercept count, 2, 5, 70-71, 107-108, 114-117
 Number per unit area, 2, 94, 101, 105, 163-164
 Point count, 1, 44, 70
 Triple junction, 105-106

D
Deformation twinning, 41-63
Dihedral angle distribution, 31, 78
Dilation, image, 144
Duplex grain structures, 114-116
Dynamic recovery, 4

E
Electron channeling patterns, 30-31
Erosion, image, 144

F
Fatigue surface profiles, 173-176
Fracture toughness, 76

G
Grain boundary
 Hardening, 3-28
 Surface area, 9-11
Grain growth, 29, 146, 149-151
Grain shape, 86
 Tetrakaidecahedron, 86
Grain size, 4, 85
 Distributions, 119
 Measurement methods, 94

H
Hardening rate, 44-47
Hardness
 Brinell, 5-9
 Harris test, 12
Impact, 21–22
Meyer test, 13
Strainless method, 11
Vickers (diamond pyramid hardness), 15, 76
Heyn intercept method, 106

O
Ostwald ripening, 29

P
Particle coalescence, 30
Point counting, 1, 44, 70, 114, 162
Polycrystalline structure, 4, 86–87, 149
Pore structure, 66, 154–156
Powder forging, 132–133
Profiles, 170–178
Projected quantities, 168

Q
Quality evaluation, cemented carbides, 66

R
Recovery, 27, 63
Resolving power, 162
Roughness parameter, 171–172

S
Silver/zinc alloys, 25
Sintering, 154–156
Spheroidized carbide structure, 154
Stacking fault energy, 19–20, 42
Strainless indentation hardness, 11
Surface area per unit volume \((S_V) \), 1, 5–9, 73, 106, 147, 155, 157, 163

T
Tension test, 4, 45
Texture analyzer (TAS), 134
Transgranular cleavage, 78
Transverse rupture strength, 76
Triple point count, 105-106
Tungsten carbide (WC), 65

V
Vickers hardness (diamond pyramid hardness), 15, 76

W
Volume fraction (V_v), 1, 44, 70, 115, 147-148, 155, 157, 163
Work hardening rate, 44-47