Index

Key to Abbreviations Used in Index
T = table
D = definition
F = figure
[] = see this subject under this listing

A

Activation energy, 157, 319
Aerospace alloys (steels), 250
Air pollution effects, 32
Alloy composition, 199
Alternate immersion test, 3, 31, 244, 252
Aluminum, 128
Aluminum alloys, 3, 44, 61, 94, 143, 252, 267
Intergranular corrosion, 11
Copper
2XXX series, 153
2014-T651, 154T
2021-T81, 96T
2024-T351, -T851, 96T, 252
2124-T851, 148T
2219-T37, -T87, 95
Magnesium
5086, 132, 216
5456, 152
5456-H117, 154T
Magnesium silicide
6061-T651, 154T
7XXX series (Al-Zn-Mg-Cu), 3, 32

Zinc magnesium
7005-T53, 32
7039-T6351, 96T
Zinc-magnesium-copper
7050-T76511, 148T, 252
7075-T651, -T76, 3, 5T, 62, 96T, 147, 252
7079-T651, 44, 64, 67, 145
Aluminum Association, 3
Anodizing, sulfuric acid, 256
Apparatus, 82
Armco 17-10P, 327
Armco 17-14CuMo, 327
ASTM A288-CL-8 steel, 109
ASTM A381 steel, 85
ASTM standards
A 262-64T, 383
B 557-73, 95
D 1141-52(1971), 7, 31, 113
D 1193-70, 7
E 8-69, 95
E 399-72, -74, 56, 73, 76, 95, 114, 116, 164, 177, 190, 202, 224
G 1-72, 352
G 30-72, 336
G 36-73, 336
G 39-73, 336

423
G 44-75, 31
G 47-76, 3
Atmospheric exposure, 12, 20, 64
Austenitic stainless steels [Steels]
Automated method [Test methods]

B
Ballistically damaged panels, 226
Blind holes, 61
Bolting [Products], 243
Bolt loaded [Specimen fixtures], 46, 108, 145, 177, 255

C
Carbonate solution [Corrosion-agent], 85
Cast stainless steels [Products], 381
Cathodic charging, 399
Caustic solution [Corrosion-agent], 92
CD-4M Cu (cast stainless steel), 393
CE (cast stainless steel), 393
CF grade (stainless steel), 381
CF-3 (cast stainless steel), 381
CF-3M (cast stainless steel), 381
CF-8 (cast stainless steel), 381
CF-8M (cast stainless steel), 381
CF-20 (cast stainless steel), 385T
CF-30 (cast stainless steel), 385T
CN-7M (cast stainless steel), 391
Chemical adsorption, 308
Cleavage, 128, 220, 366
Coatings, 243
Diffused nickel cadmium, 244
Nickel plus SermeTel W, 244
SermeTel W, 244
Cold-worked holes [Metallurgical variables]
Composition (Alloy composition [Effects of]), 34T, 46T, 89, 199
Compositional variable, 199, 399, 421
Aluminum, 325
Antimony, 325
Arsenic, 325
Bismuth, 325
Boron, 326
Carbon, 325
Cerium, 326
Chromium, 199
Cobalt, 325
Columbium, 326, 391
Molybdenum, 199, 381
Nickel, 325
Nitrogen, 317, 325, 383
Phosphorus, 199, 325
Rare earth metals, 399
Ruthenium, 325
Silicon, 199, 325
Sulfur, 199, 326, 399
Tin, 326
Titanium, 326
Zirconium, 326
Constant strain rate technique, 82, 83D
Corrosion Agent
Acetic acid, 402
Air, 78, 109, 125, 147, 215, 226
Carbonate solution, 85, 193
Caustic solution, 92, 310
Dissolved oxygen, 89
Distilled water, 176, 193
Ferric chloride, ferrous chloride, 251, 322, 326
HCl, 341
Hydrogen, 108, 189, 210, 213, 308, 332, 349, 399
Magnesium chloride, 308
Marine environment, 72
Moisture, 61, 69
NaCl-K₂Cr₂O₇ solution, 7, 193
NaOH, 86
Nitrogen dioxide, 32
Outdoor atmospheres, 3, 20
Ozone, 32
Relative humidity, 32
Salt water, 44, 72, 215
Seawater, 44, 108, 176
Sodium chloride, 3, 16, 44, 97, 128, 145, 159, 176, 202, 215, 226, 252, 381
Substitute ocean water, 113
Sulfur dioxide, 32, 41
Sulfuric acid, 341, 366
Synthetic seawater, 3, 28, 113
Water, 310
Water, high temperature, high pressure, 89
Product, 95, 255, 308
Ferric oxide, 196
Iron-sulfide deposits, 349
Resistant alloys, 243
Types
Corrosion fatigue, 72, 80, 157, 226
Crevice corrosion, 190, 243, 250, 289
Galvanic corrosion, 213, 243, 250, 252
Hydrogen embrittlement, 157, 189, 243, 247, 289, 366
Intergranular corrosion, 11, 292
Stress corrosion cracking
Mechanism, 49
Pitting, 243, 250, 268, 289, 308, 344
Sulfide stress cracking, 338, 399
Corrosion fatigue [Corrosion-types]
Corrosion potential (see Electrode potential)
Corrosion thresholds (see Stress intensity factor-Stress corrosion threshold)
Crack growth rate \((da/dt)\), 44D, 54, 101, 109, 176, 189, 260, 420
Cracking mode, 11, 220
Brittleness, 82, 247
Ductility, 82, 349, 366
Planar, 366
Intergranular, 11, 16, 220, 247, 268, 311, 346
Transgranular, 11, 268, 309, 346
Crack initiation, 109, 169, 176, 252, 312, 399
Crack propagation, 32, 44, 49, 72, 94, 108, 128, 143, 189, 199, 243, 289, 308, 349, 399, 410
Creep, 104, 190, 312
Crevice corrosion [Corrosion-types]
Crude oil, 338
Custom 455 [Steel-stainless-precipitation hardening], 246T

D
D6AC [High strength-Steels], 176, 189, 289
Diffusion [Metallurgical variable], 157, 210, 420
Dislocations, 308
Dissolved oxygen, 89
Distillation equipment, 338
Double-cantilever beam [Precracked specimen-Specimens], 46

E
Electrode potential [Corrosion potential] 55, 85, 128, 189, 289, 323, 326, 368
Electrochemical coupling, 128, 214
Electroplating, 243
Environmental Protection Agency, 32
Experimental design, 32, 35

F
Fasteners [Product], 243, 252
Fatigue life, 253, 267
Ferric oxide [Corrosion product], 196
Ferrite [Metallurgical variables-structure]
Flaw size, 128, 157, 189
Flaw size analysis diagram, 135, 136F
Foil [Products]
Forgings [Products-aluminum alloy]
Fractography, 128, 202, 217, 349
Fracture properties, 72, 176
Fracture surfaces [Metallurgical variables] 128, 189, 217, 247, 326, 349, 366, 416

G
Galvanic corrosion [Corrosion-type], 213, 252

H
H11 [Steel-high strength, low alloy], 246T
Heavy section [Products]
High hardness [High strength-Steels], 226
High strength, low alloy (HSLA) [Steels], 189
High strength steels [Steels], 243
High toughness [Steels], 176
HP 9-4-45 [Ultrahigh strength steels], 199
Hydrazine [Inhibitors], 189
Hydrogen [Corrosion-agent], 108, 140, 189, 210, 213, 308, 332, 349, 399, 421
Hydrogen detector, 190
Hydrogen embrittlement [Corrosion-type], 157, 189, 247, 289, 366, 399
Hydrogen sulfide [Corrosion-agent], 108, 338, 349, 399

I
Inclusions [Metallurgical variables], 399
Inconel 600 [Nickel alloy], 90
Inconel 718 [Nickel alloy], 246T
Incubation period, 176, 251
Industrial atmosphere, 143, 152
Inhibitors, 88, 97, 189
Hydrazine, 189
Oxidizing, 189
Sodium dichromate, 189
Interference fit fasteners [Products], 252
Interference fits, 252, 267
Intergranular corrosion [Aluminum alloys, Corrosion-types], 11, 37, 381
Intergranular crack, 85, 87F, 128, 204, 247
Interlaboratory program, 3, 21
Iron-sulfide deposits [Corrosion-products], 349

K
Kיסс [Stress intensity factor for crack opening mode-threshold value under stress corrosion cracking conditions]

L
Laminar composite [Products-Steels], 226

M
Machining, 61
Magnesium, 128, 216
Maraging 300 [Steel-high strength], 246T
Marine environment, 72
Mechanism [Corrosion-Stress corrosion cracking], 49, 126, 157, 189, 210, 349
Metallurgical variables, 308, 421
Anisotropic behavior, 162, 252
Annealed, 346, 381
Cold-worked holes, 252, 267
Diffusion, 157
Ductility, 399
Fracture surfaces, 247, 349, 366, 416
Heat treatment, 213
Inclusions, 399
MnS, 404
Lamellar carbides, 400
Nucleation, 308
Plastic strain, 308
Sensitization, 293, 311, 346, 381
Spheroidized carbides, 400
Structure, 89, 199, 399
Austenite, 326, 367
Bainitic, 199
Ferrite, 220, 325, 326, 381
Martensitic, 199, 220, 227, 308, 326, 367, 400
Thermal treatment, 176
Toughness, 399, 420
Vacuum induction melted, 200, 214
Microvoid coalescence, 128, 220
Moisture, 61, 69
MP35N [Co-Ni alloy], 246T
MP159 [Nickel alloy], 246T

N
Nickel alloys, 244
Inconel 600, 90, 334
Inconel 718, 246T
Inconel 800, 334
MP35N, 246T
MP159, 246T
Nickel cadmium, diffused (coatings), 244

O
Oxidizing [Inhibitors], 189
Outdoor atmospheres [Corrosion-agent], 3, 20

P
Paint, 253
pH, 189, 301, 308, 310, 338
PH13-8Mo [Steel-stainless-precipitation hardening], 246T
Plateau velocity, 104, 143, 194, 420
Plating, 243
Portevin-Le Chatelier effect, 331
Potential pH diagram, 304
Precipitation hardening [Stainless-Steels]
Precracked specimens [Specimens]
Products
Aluminum alloy
 Extruded bar, 252
 Extruded tube, 32
 Fasteners, 252
 Forgings, 61, 62
 Plate, 3, 95, 268
 Rivets, 256
Bolting, 243
Cast stainless steels, 381
Fasteners, 243
Foil, 366
Heavy section, 72
Interference fit fasteners, 252
Laminar composite, 226
Plate, 73, 109, 159, 200, 214
Wire, 316

Q
Quenching, 61

R
Ratio analysis diagram, 72, 78F, 80, 213, 223F, 420
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinery</td>
<td>338</td>
</tr>
<tr>
<td>Residual stress</td>
<td>61, 308, 421</td>
</tr>
<tr>
<td>Ring loaded [Specimen-fixture]</td>
<td>94</td>
</tr>
<tr>
<td>Rising load</td>
<td>108, 420</td>
</tr>
<tr>
<td>Salt water [Corrosion-agent]</td>
<td>44, 72</td>
</tr>
<tr>
<td>Seacoast atmosphere</td>
<td>143, 152, 252</td>
</tr>
<tr>
<td>Sealant, wet</td>
<td>252</td>
</tr>
<tr>
<td>Sensitization [Metallurgical variables]</td>
<td>90, 152</td>
</tr>
<tr>
<td>SermeTel (coatings)</td>
<td>244</td>
</tr>
<tr>
<td>Service failure</td>
<td>267</td>
</tr>
<tr>
<td>Shot peening</td>
<td>253</td>
</tr>
<tr>
<td>Slip steps</td>
<td>308</td>
</tr>
<tr>
<td>Sodium dichromate [Inhibitors]</td>
<td>189</td>
</tr>
<tr>
<td>Specimen fixtures</td>
<td></td>
</tr>
<tr>
<td>Bolt loaded</td>
<td>46</td>
</tr>
<tr>
<td>Ring loaded</td>
<td>94</td>
</tr>
<tr>
<td>Specimens, 3, 6F, 176</td>
<td></td>
</tr>
<tr>
<td>Bent beam</td>
<td>310F</td>
</tr>
<tr>
<td>Bolt</td>
<td>244</td>
</tr>
<tr>
<td>Charpy V-notch</td>
<td>349</td>
</tr>
<tr>
<td>Constant strain rate</td>
<td>84</td>
</tr>
<tr>
<td>C-ring</td>
<td>15, 33</td>
</tr>
<tr>
<td>Precracked, 44, 47, 420</td>
<td></td>
</tr>
<tr>
<td>Cantilever beam</td>
<td>73, 128, 143, 214</td>
</tr>
<tr>
<td>Center notched panels</td>
<td>226</td>
</tr>
<tr>
<td>Compact tension</td>
<td>94, 110, 159, 177, 190</td>
</tr>
<tr>
<td>Double-cantilever beam</td>
<td>44, 46, 159, 253, 349</td>
</tr>
<tr>
<td>Single-edge notched</td>
<td>159</td>
</tr>
<tr>
<td>Surface-cracked panels</td>
<td>128</td>
</tr>
<tr>
<td>Wedge-opening loaded</td>
<td>177</td>
</tr>
<tr>
<td>Notched beam</td>
<td>401</td>
</tr>
<tr>
<td>Tension</td>
<td>15, 253</td>
</tr>
<tr>
<td>U-bend</td>
<td>292, 339</td>
</tr>
<tr>
<td>Stainless steels [Steels]</td>
<td></td>
</tr>
<tr>
<td>Standard method of testing (Standard test method)</td>
<td>251</td>
</tr>
<tr>
<td>Standard test method [Tests-standard]</td>
<td></td>
</tr>
<tr>
<td>Statistical measurements</td>
<td>205</td>
</tr>
<tr>
<td>Steel(s)</td>
<td>349</td>
</tr>
<tr>
<td>Aerospace alloys</td>
<td></td>
</tr>
<tr>
<td>Armor</td>
<td>226</td>
</tr>
<tr>
<td>High hardness</td>
<td>226</td>
</tr>
<tr>
<td>High strength</td>
<td>128, 176, 189, 243, 366</td>
</tr>
<tr>
<td>Maraging 300, 246T</td>
<td></td>
</tr>
<tr>
<td>4037, 246T</td>
<td></td>
</tr>
<tr>
<td>High strength, low alloy (HSLA)</td>
<td>210, 289</td>
</tr>
<tr>
<td>H-11, 246T</td>
<td></td>
</tr>
<tr>
<td>8740, 246T</td>
<td></td>
</tr>
<tr>
<td>D6AC, 176, 189, 289</td>
<td></td>
</tr>
<tr>
<td>High hardness</td>
<td>4340, 108, 128</td>
</tr>
<tr>
<td>High toughness</td>
<td></td>
</tr>
<tr>
<td>Laminar composite</td>
<td>226</td>
</tr>
<tr>
<td>Mild</td>
<td></td>
</tr>
<tr>
<td>ASTM A381, 85</td>
<td></td>
</tr>
<tr>
<td>Carbon steel</td>
<td>90</td>
</tr>
<tr>
<td>Moderate strength</td>
<td></td>
</tr>
<tr>
<td>2¼Cr-1Mo, 349</td>
<td></td>
</tr>
<tr>
<td>Stainless steels</td>
<td>289, 381</td>
</tr>
<tr>
<td>A286, 272</td>
<td></td>
</tr>
<tr>
<td>Austenitic, 308, 338, 366</td>
<td></td>
</tr>
<tr>
<td>Type 302, 316, 318</td>
<td></td>
</tr>
<tr>
<td>Type 304, 90, 314, 317, 318, 320, 334, 367, 385T</td>
<td></td>
</tr>
<tr>
<td>Type 304L, 90, 326, 385T</td>
<td></td>
</tr>
<tr>
<td>Type 309, 317</td>
<td></td>
</tr>
<tr>
<td>Type 310, 324, 334, 366</td>
<td></td>
</tr>
<tr>
<td>Type 316, 289, 316, 317, 385T</td>
<td></td>
</tr>
<tr>
<td>Type 316L, 385T</td>
<td></td>
</tr>
<tr>
<td>Type 347, 322</td>
<td></td>
</tr>
<tr>
<td>Cast, 381</td>
<td></td>
</tr>
</tbody>
</table>
Ferritic, 338
19Cr-2Mo, 339
Type 430, 340T
Type 434, 340T
434-Mod, 339
Precipitation hardening, 213, 244
Custom 455, 246T
PH13-8Mo, 246T
17-4PH, 128, 213
Ultrahigh strength, 199
HP9-4-45, 199
Steel fasteners, 256
Stress, 308, 399
Assembly, 61, 252
Coining, 267
Heat treatment, 61
Quenching, 61
Residual, 61, 252, 267, 308
Stress-corrosion cracking, 1, 3, 44, 61, 308D
Stress-corrosion threshold (see also Stress intensity factor \(K_{\text{isc}} \)), 252, 409
Stress-intensity (Stress intensity factor, \(K_\gamma \)) 44, 45D, 51F, 101, 143, 157, 176, 255, 349, 420
Stress intensity factor-Stress corrosion threshold \((K_{\text{isc}}) \), 45D, 73, 94, 108, 128, 143, 176, 190, 199, 213, 226, 420
Substitute ocean water [Corrosion-agent](synthetic seawater), 113
Sulfide stress cracking [Corrosion-types], 338, 399
Surface-cracked panels [Precracked specimens-Specimens]
Sustained load cracking, 79
Synthetic seawater [Corrosion-agent] (Substitute ocean water), 3, 28, 113

T
Test methods, 143, 176
Automated method, 94
Laboratory, 82
Tests, 3
Accelerated, 3, 108
Alternate immersion, 3, 31
Fracture, 349
Intergranular corrosion, 381
Screening, 126
Standard, 3
Federal method 823, 4, 255
G47-76, 3
MIL-STD-1312, 243
Titanium, 72, 157
Titanium fasteners, 256
Titanium 6Al-2Cb-1Ta-0.8Mo, 74
Ti-6Al-4V, 159

U
Ultrahigh strength [Steels]

V
Vacuum melted [Metallurgical variables], 214

W
Water, high temperature, high pressure, 89

X
Xenon arc lamp, 33

Z
Zinc, 128, 216
<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2\frac{1}{4}Cr-1Mo</td>
<td>(Steel-moderate strength)</td>
<td>349</td>
</tr>
<tr>
<td>19Cr-2Mo</td>
<td>(Steel-stainless-ferritic)</td>
<td>339</td>
</tr>
<tr>
<td>17-4PH</td>
<td>[High strength-Steels]</td>
<td>128</td>
</tr>
<tr>
<td>302</td>
<td>(Steel-stainless-austenitic)</td>
<td>316, 318</td>
</tr>
<tr>
<td>304</td>
<td>stainless steel,</td>
<td>90, 314, 317, 318, 320, 334, 338, 367, 385T</td>
</tr>
<tr>
<td>304L</td>
<td>(Steel-stainless-austenitic)</td>
<td>90, 326, 340T, 385T</td>
</tr>
<tr>
<td>309</td>
<td>[Steel-stainless-austenitic]</td>
<td>317</td>
</tr>
<tr>
<td>310</td>
<td>[Austenitic-stainless-steel]</td>
<td>324, 334, 366</td>
</tr>
<tr>
<td>316</td>
<td>(Steel-stainless-austenitic)</td>
<td>289, 316, 317, 338, 385T</td>
</tr>
<tr>
<td>316L</td>
<td>(Steel-stainless-austenitic)</td>
<td>385T</td>
</tr>
<tr>
<td>321</td>
<td>(Steel-stainless-austenitic)</td>
<td>340T</td>
</tr>
<tr>
<td>347</td>
<td>[Steel-stainless-austenitic]</td>
<td>322</td>
</tr>
<tr>
<td>430</td>
<td>(Steel-stainless-ferritic)</td>
<td>340T</td>
</tr>
<tr>
<td>434</td>
<td>(Steel-stainless-ferritic)</td>
<td>340T</td>
</tr>
<tr>
<td>434-Mod</td>
<td>(Steel-stainless-ferritic)</td>
<td>339</td>
</tr>
<tr>
<td>2014</td>
<td>[Aluminum alloy],</td>
<td>154T</td>
</tr>
<tr>
<td>2021</td>
<td>[Aluminum alloy],</td>
<td>96T, 154T</td>
</tr>
<tr>
<td>2024</td>
<td>[Aluminum alloy],</td>
<td>96T, 154T, 252</td>
</tr>
<tr>
<td>2124-T851</td>
<td>[Aluminum alloy],</td>
<td>148T</td>
</tr>
<tr>
<td>2219</td>
<td>[Aluminum alloy],</td>
<td>95, 154T</td>
</tr>
<tr>
<td>4037</td>
<td>[Steel-high strength],</td>
<td>246T</td>
</tr>
<tr>
<td>4340</td>
<td>[Steel-high strength],</td>
<td>108, 128, 246T</td>
</tr>
<tr>
<td>5086</td>
<td>[Aluminum alloy],</td>
<td>132</td>
</tr>
<tr>
<td>5456</td>
<td>[Aluminum alloy],</td>
<td>152</td>
</tr>
<tr>
<td>5456-H117</td>
<td>[Aluminum alloy],</td>
<td>154T</td>
</tr>
<tr>
<td>6061-T651</td>
<td>[Aluminum alloy],</td>
<td>154T</td>
</tr>
<tr>
<td>7XXX Series</td>
<td>[Aluminum alloys]</td>
<td></td>
</tr>
<tr>
<td>7005-T53</td>
<td>[Aluminum alloys],</td>
<td>32</td>
</tr>
<tr>
<td>7039</td>
<td>[Aluminum alloy],</td>
<td>96T</td>
</tr>
<tr>
<td>7050-T76511</td>
<td>[Aluminum alloy],</td>
<td>148T, 252</td>
</tr>
<tr>
<td>7075-T651, -T76, 3, 5T, 62, 96T, 147, 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7079-T651</td>
<td>[Aluminum alloys],</td>
<td>44, 64, 67, 145</td>
</tr>
<tr>
<td>8740</td>
<td>[Steel-high strength low alloy], 246T</td>
<td></td>
</tr>
</tbody>
</table>