Index

A
Altered resin batches, 9
Arrhenius plots, 49
AS/3501-6 graphite/epoxy, 4, 7, 9, 13
AS-1/3502 graphite/epoxy, 56, 58
ASTM Test D 790 (flexure), 55
ASTM Test D 2344 (interlaminar shear strength), 17, 54
ASTM Test D 2471 (gel time), 40
Autoclave cure process, 17, 30, 56, 97, 157

B
Boron trifluoride catalyst, 4, 11
Brominated epoxy, 39
B-stage epoxy resin, 38, 45, 50
Buckling load, 160

C
Carbonyl-containing epoxy, 4, 11
Celanese diallyl phthalate (DAP)/C6000, 158
Chemorheological characterization, 38, 50, 52
Consistency
 Manufacturing, 29
 Prepreg processing, 14, 15, 27
Crystalline thermoplastics, 120
Crystallization temperature, 121, 123
C-scan, 18, 21, 80, 81
Cure behavior, 48
Cure cycle variations, 18

D
Darcy’s Law, 104, 114
DER 332, 40
DER 511, 40, 52
DGEBA, 40, 41
Diaminodiphenylsulfone (DDS), 4, 7, 9, 11, 14, 98
Dicyandiamide (DICY), 39, 41, 45, 52
Differential scanning calorimetry (DSC), 39, 47, 49, 50, 120, 126, 158
Diglycidyl ether of tetrabromobisphenol A, 39, 40
Dimensional analysis, 97

E
Element mechanical property tests, 159
Exotherm peak temperature, 39, 49

F
Fabrication support materials, 30
Face tension test, 17, 21
Failure surface topography, 68
Fluid flow parameters, 27, 28
Fluid pressure, 30, 32, 34, 37
Fourier transform infrared spectroscopy (FTIR), 13, 120, 122, 126
Four-point shear, 54
G
Gas bubble pressure, 106
Gas pressure, 32, 34, 37
Gelation
 Energy of activation, 46, 49
 Onset, 35, 52
 Point, 46
 Temperature, 47
 Time, 34, 35, 38, 40, 43, 46, 48
Gel permeation chromatography (GPC), 23, 41, 52
Glass transition temperature, 39, 122
Gradients
 Pressure, 30, 32, 98
 Thermal, 30, 31, 36
Graphite/epoxy, 3, 4, 15, 17, 54, 55, 58, 96, 110, 157

H
Hackles, 68
Hardener, 24
Hat-stiffened panels, 159
Hexcel HX565/T300, 158
HPLC, 4, 23, 26, 40, 42, 52
HPLC test development
 Flow rate, 7
 Gradient/wavelength selection, 6
 Optimized test, 9
 Solvent selection, 6
Hydrostatic pressure, 98, 100

I
Imperfections, 75
Inflection temperature, 39, 47, 49, 50
Infrared spectroscopy, 23, 43
Interlaminar
 Failure modes, 54, 58, 61, 64, 67, 74
 Shear failure, 55
 Shear strength, 54, 58, 74, 167
 Voids, 15, 17, 21

L
Liquid chromatography, 4, 10, 12, 17, 23, 39, 40
Lognormal distribution/statistical data reduction, 59, 61, 64, 66

M
Major epoxy, 22, 24, 27
Mass spectrometry, 22
Melt temperature, 121-123
Metallography, 92, 93
Metal matrix composite materials, 80
Microstructure, 133
Minor epoxy, 23
Models
 Cure process variables, 110
 Laminate process behavior, 31, 32
 Manufacturing process, 37
 Numerical solution, 117
 Resin flow, 114
 Thermo-chemical, 111
 Void formation, growth, transport, 96
Modulus
 Loss, 34, 45
 Storage, 34, 45
 Modulus crossover point, 46, 48, 52

N
Narmco 5208 epoxy resin, 30, 47
NDI techniques
 Acoustic emission, 83, 92, 135
 Eddy currents, 81
 Ultrasonic attenuation monitoring, 83
 Ultrasonic C-scanning, 18, 21, 80, 81, 86
 Vibrothermography, 81
 X-ray radiography, 81, 90, 139, 151
 NEMA Grade FR-4 glass-reinforced epoxy resin, 39
Nondestructive evaluation/inspection of composites, 75, 76, 78, 92
Nondestructive inspection (see NDI techniques)
Novolac-type epoxy, 4, 9, 14
Nuclear magnetic resonance, 22

O
Onset temperature, 39
Out-time effects, 12

P
PEEK, 120, 121
PET, 120
Polybutylene terephthalate (PBT), 120
Polyester resin, 133, 158
Polyvinyl ether resin, 158
Porosity, 15, 17, 22, 24
Post-buckling compression fatigue, 160
PPS, 120
Prepreg
 Processing consistency, 14, 27
 Variations, 9, 15
Printed wiring board resins, 38
Processing science, 15
Process transformation diagram, 34, 37

Q
Quick-cure composites, 157

R
Resin deformation, 68
Resin matrix
 Advancement, 10, 26, 42
 Interaction, 11
 Out-time effects, 12
Resin microcracking, 68, 69, 149
Resin viscosity, 34
Rheology characterization, 34, 45, 50, 52
Rheometrics Dynamic Spectrometer, 17, 25, 39, 159, 165
Ryton, 121

S
Scanning electron microscopy (SEM), 55, 68, 91, 149
Screening test laminate, 17, 18, 28
Shear test
 Four-point (FPS), 54, 57, 64, 68, 74
 Short-beam (SBS), 17, 21, 54, 64, 74, 159
Sheet molding compound (SMC) composites (see SMC), 133
Short-beam shear, 17, 21, 22, 54
SMC
 Acoustic emission, 139
 Automotive applications, 133
 Damage growth, 141
 Mechanical behavior, 134
 Microscopic analysis, 139
 Microstructure variations, 134, 153
 Test methods, 135
Solvent/chemical sensitivity of thermoplastics, 120, 131
Span-to-depth ratio, 55, 58
Specification development, 15, 21, 27, 37
Stress concentrations, 57
Surface replication, 136

T
T-300/5208, 30, 99
Tan delta, 34, 35
Tetraglycidyl methylenedianiline (TGMDA), 4, 7, 10, 98
Thermoplastic matrix composites, 119
Thick-beams, 55, 61, 64, 74
Thin-beams, 55, 61, 74

U
Ultrasonic inspection, 17, 21, 25, 79

V
Vacuum-bag cure composites, 157
Viscosity
 Characterizations, 25, 34
 Profiles, 25, 27, 30, 35, 165
 Studies, 25, 34

Void
 Formation, 96, 100, 101, 105
 Pressure, 107
 Stabilization, 97, 100, 102, 105
 Transport, 96, 100, 103

W
Woven graphite composites, 158

X
X-ray diffraction, 120, 122