Index

A
- Adsorption head, 184
- Adsorption-desorption, 199
- Air hammer, 226
- Anisotropy, 158
- Aquifer, 73, 81, 226
- Aquifer recharge, 213
- Arid regions, 85
- Arsenic, 229
- Asphalt liner, 156
- Attenuation, 198, 221
- Axis translation method, 34

B
- Back pressure, tests with, 118, 128, 138, 162
- Barrier, 219
- Biological processes, 119
- Bubbling pressure, 117

C
- Calibrating fluid, 90
- Capillary fringe, 168
- Capillary model, 145
- Cavitation, 33
- Ceramic cup, 86
- Ceramic probe, 34
- Christensen split barrel, 226
- Chromatography paper, 90
- Chromel, 86
- Clay liner, 156
- Colloid filtration, 228
- Computer modeling, 222, 229
- Computer simulation, 209, 212
- Compressibility, coefficient of, 24
- Consolidation
 - Coefficient of, 24
 - One-dimensional testing, 24, 123
 - Primary, 25
 - Secondary, 25
- Constantan, 86
- Contaminated permeant (see Permeant)
- Contaminant transport, 197
- Convective dispersion, 203
- Convective transport, 121, 212
- Cooling pond, 162
- Corrosion, 124

D
- Dam abutment, 71, 82
- Darcy's law, 18, 40, 44, 66, 84, 122, 130, 154, 183
- Darcy (units), 19
- Decision tree, 202
- Dehydration, 138
- Diffusive flow, 40
- Diffusivity, 169
- Diisopropylmethylyphosphonate (DIMP), 209
- Dilution, 217
- Dispersion, 217
- Dispersion coefficients, 213, 228, 235
- Dispersion parameters, 222
- Dispersivity, 232
- Dispersometer, 228
- Distilled water, 54, 113
Distribution coefficient, 228, 232
Double-layer effects, 122

E
Elastomer liner, 156
Electrolyte gradient, 40
Equilibrium constant, 235
Equilibrium energy, 85
Equilibrium moisture content, 171
Errors, from field testing, 47, 50, 77
Errors, from laboratory testing
Air, 28, 44
Clay chemistry alteration, 28, 40
Excessive hydraulic gradients, 30, 50
Filter impedance, 41, 43
Flow direction, 32
Growth of microorganisms, 29, 40
Miniscus problems, 30
Sample preparation, 27
Stress changes, 31
Temperature, 31, 41, 110
Errors, special conditions
Anisotrophy, 48
Compressible soil, 49
Corrosion of psychrometer, 190
“Dirty” water, use of, 50
Excessive heads, use of, 30, 50
Head loss, in and near probe, 49
Inadequate calibration of psychrometer, 190
Leaking well seals, 50
Tube entrance losses, 50
Evaporation, 158, 168
Exploration, 226

F
Field pump test, 231
Filter impedance (see Errors from laboratory testing)
Finite element method, 191, 229
Flow, laminar, 74
Flow net analysis, 65
Flow, turbulent, 74, 81
Fluorescein, 54
Fourier series solution, 41
Freeze-drying, 138

G
Gas constant, 86
Gradient, threshold, 123
Groundwater chemistry, 234
Groundwater level, 168
Grout seal, 47

H
Hagen–Poiseuille model, 145
Henry’s law, 23
Hydraulic conductivity, 19–21, 53, 65, 66, 84, 101, 121
Hydraulic gradient, 19, 53, 80, 84, 121
Hydrodynamic dispersion, 199
Hydrologic cycle, 183

I
Impedance ratio, 43
Infiltration, 213
Intrinsic permeability, 19, 66, 101
Ion exchange, 228
Isoconcentration lines, 238
Isopach, 238

K
Kozeny–Carman equation, 102

L
Laboratory simulation, 206
Lateral diffusion, 205
Lead-210, 229
Lefranc test, 154
Linear chemical reaction, 205
Longitudinal convection, 205
Lugeon test, 78
M
Manometer, 36
Marine sediments, 121
Mariotte bottle, 22
Marshall model, 145
Matching factor, 176
Measuring junction, 86
Migration, 222
Model calibration, 213
Modeling, 203, 212, 222
Molecular diffusion, 199, 203
Monitoring wells, 219, 235

N
Neumann boundary conditions, 241

O
Ocean sediments, 121
Osmotic head, 184
Oxidation-reduction, 199

P
Packer tests (see Pump-in tests)
Partially saturated soils, 32
Peltier effect, 86
Permeability (see Intrinsic permeability and Hydraulic conductivity)
Permeant
Acidic, 105
Alkaline, 105
Contaminated, 101
Salt water, 162
Seawater, 127
Piezometer, 65, 75, 81, 226
Piezometric level, 74
Polonium-210, 229
Pollution prediction technique, 200
Polyvinyl chloride (PVC) liner, 156
Pore size distribution, 137
Porosimeter, 141
Porosity

Combined, 71
Effective, 232
Enlarged, 71
Genetic, 67
Primary, 67
Quantitative, 67, 213
Reduced, 71
Secondary, 66
Porous stone, 36, 41
Precipitation, 199, 228
Pressure meter, self-boring, 47
Pressure plate, 34
Pressure transducer, 34
Probe, ceramic, 32
Probe, neutron, 51
Proctor method, 142, 157, 164
Pseudopermeability, 75
Psychrometer (see Thermocouple psychrometer)
Pump-in tests, 77

R
Radium-226, 229
Randolph soft sediment barrel, 226
Relative humidity, 85
Remote sensing, 82
Resource Conservation and Recovery Act, 198
Rock, 65
Rocky Mountain Arsenal, 212

S
Salt concentration gradient, 184
Sampling, 171
Scoria, 73
Seepage velocity, 76
Seepage velocity, effective, 67
Seismic refraction, 226
Site
Assessment, 202
Characterization, 200
Modeling, 203
Selection, 201
Slimes, 104
Slurry wall, 219
Soil moisture retention, 169, 172
Sorptivity, 172, 228
Specific gravity, 104
Specimen preparation, 138, 188, 228
Springs, 82
Storage coefficient, 213
Stream gaging, 81
Subregional discharge, 80
Suction, soil, 32, 50, 85, 169, 184
Suction, wetting front, 172

T
Tailings, 101, 221, 230
Tailings impoundments, 101
Tailings, simulated, 109
Teflon lining, 105
Temperature effects, 124, 132, 184
Tensiometers, 32, 51, 85, 184
Testing devices, laboratory permeability
 Calibration of, 116
 Consolidation cell, 21, 123
 Constant head, 22, 116
 Falling head, 22, 138
 Pressure plate, 34, 85
 Psychrometer (see Thermocouple psychrometer)
 Radial flow, 26
 Temple pressure cell, 171
 Triaxial cell, 22, 116
Testing methods, field permeability of partially saturated soil
 Infiltration through impeding layer, 51
 Instantaneous profile, 50, 185
 U.S. Bureau of Reclamation (USBR) E-36 tests, 160
Testing methods, field permeability of saturated soil
 Auger method, 45
 Cased borehole, 46
 Lefranc test, 154
 Nasberg test, 154
 Porous probes, 47
Testing methods, laboratory permeability
 “Batch” adsorption, 207
 Constant head, 22, 116
 Falling head, 22, 138
 Instantaneous profile, 36, 41, 172
 Low gradient with back pressure, 121, 162
 Mercury intrusion, 138
 Pressure membrane, 34, 85, 171
 Pressure-plate outflow, 38, 43, 85, 93, 171, 184
 “Shaker” adsorption, 207
 Steady-state, 35, 41
 Thin-layer chromatography, 207
 Test pond, 159, 164
 Thermocouple psychrometer, 34, 84, 93, 185, 187
 Calibration of, 93
 Corrosion of, 94, 190
 Response time of, 93
 Thorium-230, 229
 Tracer, 213, 228
 Transducer, pressure, 24

U
Uranium, 221

V
Vacuum saturation, 139
Viscosity, 19, 66, 102, 113
Visking membrane, 34
Void ratio, 67
Voids, effective, 66
Volume change device, 24
INDEX 251

W
Waste characterization, 200
Waste pond, 104, 198, 210
Wastes
 Industrial, 84, 183
 Liquid, 168, 197

 Radioactive, 84, 183
 Solid, 197
 Toxic, 183
 Water vapor, 86
 Well point, 47
 Well test, 77