Index

A

Admixtures
 Calcium nitrite, 64-73
 Chelating, 51-62
 Retarders, 65
 Superplasticizers, 66
Analog-to-digital converter, 69
Anions, inhibiting, 142-159
Anode
 Current, impressed, 34
 Half-cell reaction, 143
 Reactions, 11
Atomic adsorption measurements, 52

B

Breaking strength, reduction, 17
Bridge decks
 Annual cost of repairs, 4
 Critical concentration chlorides, 13
 Test structures, 70, 133

C

Chromates
 Passivation by, 143-159
 Reduction of, 155

Cl−, 3, 11
 Importance, 12, 15
 Ions, 18
Calcium nitrite, 64-74
Cathodic reduction, 11
Chlorides
 Calcium, additions, 105
 Concentration threshold, 13, 19
 Critical concentration, 13, 15, 138
 Effect on steel corrosion reaction products, 18, 77
 Measurement, 134
 Migration, transport mechanisms, 18
 Penetration, 97
Chromate, pH, 143
Concrete
 Breaking strength, 17
 Carbonation, 108, 112
 Chemical attack, 77
 Chromate additives, 103, 143
 Correlation cracks with breaking strength, 17
 Corrosion inhibition, 3
 Corrosion reaction with steel, 77
 Cover, 142
 Cracking and spalling, 51
 Effect sulfates in seawater, 77
 Inspection test specimens, 22
 Internally sealed, 93-101
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal fiber reinforced, 75</td>
<td>Monitoring and testing, 20</td>
</tr>
<tr>
<td>Petrographic examination, 134, 140</td>
<td>pH, 3, 143</td>
</tr>
<tr>
<td>Poor quality, 122</td>
<td>Prestressed beams, 17</td>
</tr>
<tr>
<td>Prestressed concrete pressure vessels (PCPV), 32</td>
<td>Prestressed specimen, 19</td>
</tr>
<tr>
<td>Reaction with seawater, 77</td>
<td>Reinforced, 3</td>
</tr>
<tr>
<td>Resistivity, 13, 24</td>
<td>Concrete beams, internally sealed, 93-101</td>
</tr>
<tr>
<td>Concrete, galvanized reinforced</td>
<td>Bond characteristics, 179</td>
</tr>
<tr>
<td>Definition performance requirements, 191</td>
<td>Field performance, 187</td>
</tr>
<tr>
<td>Laboratory investigation of corrosion, 163</td>
<td>Marine, 77-78</td>
</tr>
<tr>
<td>Mechanical properties, 185</td>
<td>Durability, 102-131</td>
</tr>
<tr>
<td>Measurement techniques, 132-141</td>
<td>Coatings, protective</td>
</tr>
<tr>
<td>Cadmium, 104</td>
<td>Flaws, 37, 49</td>
</tr>
<tr>
<td>Galvanized, 102-131</td>
<td>Grease or waxes, 33</td>
</tr>
<tr>
<td>Nickel, 104</td>
<td>Portland cement grout, 33</td>
</tr>
<tr>
<td>Cracking, concrete</td>
<td>Flexural, 94</td>
</tr>
<tr>
<td>Induced, 108</td>
<td>Tensile, 123</td>
</tr>
<tr>
<td>Time to, 61, 62</td>
<td>Width, 96, 104</td>
</tr>
<tr>
<td>Critique, testing procedures, 160-195</td>
<td>Current, anodic and cathodic, 9</td>
</tr>
<tr>
<td>Current density, 17, 61</td>
<td>Stray anodic, 18, 19</td>
</tr>
<tr>
<td>Curves</td>
<td>Anodic polarization, 15</td>
</tr>
<tr>
<td>Cathodic polarization, 15</td>
<td>Polarization errors, 15</td>
</tr>
<tr>
<td>Polarization resistance, 8</td>
<td>Deterioration reinforcing steel, 15</td>
</tr>
<tr>
<td>Freeze-thaw, 78</td>
<td>Marine concrete, 77</td>
</tr>
</tbody>
</table>
E
Electrode
Reference, copper/copper sulfate, 69, 71
Reference, saturated calomel, 18
Reference, silver/silver chloride, 17, 19, 21, 26
Electrochemistry, steel in concrete, 3-16
Embrittlement, hydrogen, 47
Experiments
Compressive strength, 55
Concrete cracking, 58
Cracking tendency, 54
Solubility limits, 54
F
Fracture, brittle, 33
G
Galvanized steel
Chromate treatment, 124
Cracking of concrete with, 109-112
Critique, testing procedures, 160-195
Evaluation structures, 132-141
Performance, 102-131
Weight loss, 112-115
H
Half-cell
Copper/copper sulfate, 69, 71
Potentials, 97
Saturated calomel, 145
Silver/silver chloride, 21
Humidity, relative, 34
Hydrogen evolution, 48, 103, 143, 147, 155, 158
I
IR drop, 13
Ion
Ion solubility limit, 52, 61
Transport, 26
L
Laboratory testing, 20
Lime leaching, 98
 Loads, static and repeated, 96
M
Marine concrete, degradation factors, 78
Metal fiber reinforced concrete, 75-92
Alternatives from conventional mix design, 78
Attainable properties, 76
Cement content, aggregate size, 76
Degradation in marine environments, 78
Mechanical strength, abrasion advantage, 76
Suggested mix design, 90
Type of fibers, 80
Metallographic microscope, 134
Micrograph, scanning electron, carbon and stainless steel fibers, 85
Microprocessor, 68
Mill scale, 11
Moisture content, effects, 12
N
Nuclear reactors, 33, 34
Oxygen, availability, 48

P
Passivation of zinc (see Zinc, passivation)
Photomicrograph, 138
Pitting, potential, 62
Polarization
 Anodic, 62
 Galvanostatic experiments, 146
 Linear, 87
 Resistance curve, 8, 87
 Scans, anodic, 55
Potential
 Corrosion in concrete, 28
 Free corrosion, 8, 9
 Leveling, 28
 On and off, 26
 Open circuit, 65, 68
 Time to change, 17

R
Resistance measurements, 17, 26
 Of concrete, 26
 Variation with exposure time, 22
Retarder, 65
Reinforcing steel, 3, 7
 Polarization resistance, 12-14
 Resistivity, equations, 24

S
Salt, deicing, usage, 3
Seawater, flowing test, 80-82, 86
Steel
 High-strength, 35
 Passivity in alkaline environment, 18
 Prestressing, 33

T
Tafel slope, 9, 13, 14
 Equation, 71
Tendons, in steel pressure vessels, 32-50
Tension, cable, 33
Test
 Impressed current, 145, 161
 Procedures, design, 161
Tests, electrochemical, 7
 Accelerated bridge deck corrosion, 65
 Laboratory, 103
Test structures
 Bermuda Yacht Club, 133, 137
 Hamilton dock, 133, 137
 Longbird bridge, 133, 136
 New Hampshire bridge, 70
 St. George dock, 133, 136

W
Wax beads, 93-101
Wire
 Coated, stressed and unstressed, 44
 Prestressing, 17

Z
Zinc
 Corrosion products, 143
 Inhibiting ions, 155, 156
 Passivation, 143-159
 Polarization, 145