RELAXATION PROPERTIES
OF
STEELS AND SUPER-STRENGTH
ALLOYS AT ELEVATED TEMPERATURES

Data Compiled by and Issued Under the Auspices of
THE DATA AND PUBLICATIONS PANEL
of
THE ASTM—ASME JOINT COMMITTEE ON
EFFECT OF TEMPERATURE ON THE PROPERTIES OF METALS

Prepared for the Panel by
JAMES W. FREEMAN AND HOWARD R. VOORHEES

Published by the
AMERICAN SOCIETY FOR TESTING MATERIALS
1916 RACE STREET, PHILADELPHIA 3, PA.
RELAXATION PROPERTIES
OF
STEELS AND SUPER-STRENGTH
ALLOYS AT ELEVATED TEMPERATURES

Data Compiled by and Issued Under the Auspices of
THE DATA AND PUBLICATIONS PANEL
of
THE ASTM—ASME JOINT COMMITTEE ON
EFFECT OF TEMPERATURE ON THE PROPERTIES OF METALS

Prepared for the Panel by
JAMES W. FREEMAN AND HOWARD R. VOORHEES

Special Technical Publication No. 187

Published by the
AMERICAN SOCIETY FOR TESTING MATERIALS
1916 RACE STREET, PHILADELPHIA 3, PA.
FOREWORD

This report is one in a current series prepared under the auspices of the Data and Publications Panel of the ASTM—ASME Joint Committee on Effect of Temperature on the Properties of Metals. Organizations known to have creep-testing facilities were canvassed for relaxation data by a Subcommittee for Survey of Relaxation Data. The data received have been combined with those previously reported under Project 16 of the Joint Committee. Information presented originated with the following organizations, identified on data sheets in the body of this report by the code letters adjacent to names in the list:

A. American Steel and Wire Division, United States Steel Corp.
B. Babcock and Wilcox Co. (M.I.T.)
C. Battelle Memorial Institute
D. Bethlehem Steel Co.
E. Chapman Valve Manufacturing Co.
F. Crane Co.
G. Elliott Co.
H. General Electric Co.
J. International Nickel Co.
K. Materials Laboratory, Wright Air Development Center (University of Michigan)
L. Naval Research Laboratory
M. United Steel Companies, Ltd.
N. U. S. Naval Engineering Experiment Station
O. Timken Steel and Tube Co. (University of Michigan)
P. Westinghouse Electric Corp.

Acknowledgment:

Special thanks are due to the organizations contributing data and to their representatives for taking the time to prepare the data. In particular, credit is due Mr. Ernest L. Robinson for his collection and correlations of relaxation data in prior publications under the auspices of the Joint Committee. A significant amount of the data presented was taken directly from his prior reports.

Membership of the Subcommittee for Survey of Relaxation Data which organized the data collection was as follows:

Sidney Low, Chairman
William C. Stewart
Ean A. Davis
E. A. Sticha

The report was prepared under their direction and the authors wish to express appreciation for their advice and counsel. The membership of the parent Data and Publications Panel is as follows:

G. V. Smith, Chairman
A. J. Herzig
H. L. Burghoff
A. J. Kanter
C. L. Clark
V. T. Malcolm
H. C. Cross
D. L. Newhouse
R. M. Curran
E. E. Reynolds
C. T. Evans, Jr.
E. L. Robinson
J. W. Freeman
Leo Schapiro
G. J. Guarnieri
J. S. Worth
W. L. Havekotte
R. D. Wylie

COPYRIGHT, 1956
BY THE
AMERICAN SOCIETY FOR TESTING MATERIALS

PRINTED IN PHILADELPHIA, PA.
August, 1956
CONTENTS

Relaxation Properties of Steels and Super-Strength Alloys at Elevated Temperatures	1
Comparative 1000-Hr Relaxation Strengths for Several Classes of Alloys	7
Approximately Comparative Relaxation Strengths at 1000 Hr	8
Carbon, C-Mo, Cr-Mo, Cr-W, Cr-Mo-W and Ni-Cr-Mo Steels	8
Cr-Mo-V, Cr-W-V and Ni-Cr-Mo-V Steels	8
12Cr Type Steels	8
18Cr-8Ni Type Steels and Super-Strength Alloys	9
Approximately Comparative Relaxation Strengths at 10,000 Hr	10
Carbon, C-Mo, Cr-Mo, Cr-W, Cr-Mo-W and Ni-Cr-Mo Steels	10
Cr-Mo-V and Cr-W-V Steels	10
12Cr Type Steels	11
18Cr-8Ni Type Steels and Super-Strength Alloys	11
Carbon Steel	13
Tabular Data	14
Relaxation Strengths of Carbon Steel	14
Carbon Steel Wires—Room Temperature Tests	15
Tabular Data	16
Relaxation of Carbon Steel Wires at Room Temperature	16
C-Mo Steel	17
Tabular Data	18
Relaxation Strengths of C-Mo Steels	19
Influence of Molybdenum Content on the Relaxation Strength of C-Mo Steels at 850 F	20
O.65 to 1.10Cr - 0.10 to 0.30Mo Steels	21
Tabular Data	22
Relaxation Strengths of 0.65 to 1.10Cr-0.10 to 0.30Mo Steels	23
Influence of Initial Stress on the Relaxation Strengths of 0.65 to 1.10Cr-0.10 to 0.30Mo Steels at 850 F	24
1.0 to 1.25Cr - 0.5Mo Steels	25
Tabular Data	26
Relaxation Strengths of 1.0 to 1.25Cr - 0.5Mo Steels	27
Influence of Initial Stress on the Relaxation Strengths of 1.0 to 1.25Cr-0.5Mo Steels	28
Residual Stress-Time Curves Showing Effect of Initial Stress Level on the Relaxation Strengths of 1.25Cr - 0.5Mo Steel at 950 F. (Material 8, Oil Quenched + Tempered)	28
1Cr-1Mo, 2Cr-0.5Mo, 1.75Cr-1Mo and Modified Chromium-Molybdenum Steels	29
Tabular Data	30
Relaxation Strengths of 1Cr-1Mo, 2Cr-0.5Mo, 1.75Cr-1Mo and Modified Cr-Mo Steels	31
Chromium-Tungsten and Chromium-Molybdenum-Tungsten Steels

1.7Cr-1.7W
0.4 to 0.85Cr-0.5Mo-0.8 to 1.2W
Tabular Data
Relaxation Strengths of Cr-Mo and Cr-Mo-W Steels

Low-Alloy Steels with 1 to 3 Per Cent Ni

Ni-Mo
Ni-Cr-Mo
Ni-Cr-Mo-V
Tabular Data
Relaxation Strengths of 1-3 Per Cent Nickel Alloys

Molybdenum-Vanadium Steels
Tabular Data
Relaxation Strengths of Mo-V Steels

1Cr-0.5Mo-0.25V Steel—Quenched and Tempered
Tabular Data
Relaxation Strengths of 1Cr-0.5Mo-0.25V Steel
Influence of Initial Stress on Relaxation Strength of 1Cr-0.5Mo-0.25V Steel, Quenched + Tempered
Effect of Quenching Temperature on the Relaxation Strength of 1Cr-0.5Mo-0.25V Steel at 900 and 1000 F

1Cr-0.5Mo-0.25V Steel
Normalized and Tempered
As-Received
1Cr-0.5Mo-0.25V + Cb
Tabular Data
Relaxation Strengths of 1Cr-0.5Mo-0.25V Steel, Normalized and Tempered, As-Received, and Cb Modified
Effect of Normalizing Temperature on Relaxation Strength of 1Cr-0.5Mo-0.25V Steel at 1000 F

1.25Cr-0.75Si-0.5Mo-0.25V Steel
Tabular Data
Relaxation Strengths of 1.25Cr-0.75Si-0.5Mo-0.25V Steel
Influence of Initial Stress on the Relaxation Strength of 1.25Cr-0.75Si-0.5Mo-0.25V Steel

1.25Cr-0.75Si-0.5Mo-0.75V Steel
Tabular Data
Relaxation Strengths of 1.25Cr-0.75Si-0.5Mo-0.75V Steel

3 Cr-0.5Mo-0.25V and 1.3Cr-2W-0.25V Steels
Tabular Data
Relaxation Strengths of 3Cr-0.5Mo-0.25V and 1.3Cr-2W-0.25V Steels

12Cr Steels
12Cr and 12Cr-0.2 to 0.3Mo
12 to 13Cr-0 to 0.5Ni-0.26 to 0.46Cb
13Cr-0.7Ni-1Mo-0.2 to 0.5W-0.25V
Tabular Data
Relaxation Strengths of 12Cr, 12Cr-Mo and 13Cr-0.7Ni-1Mo-0.2 to 0.5W-0.25V Steels
Relaxation Strengths of 12 to 13Cr-0 to 0.5Ni-0.26 to 0.46Cb Steels