Mobile Bearing Total Knee Replacement Devices

JAI Guest Editors:
Kathy K. Trier
A. Seth Greenwald
Journal of ASTM International
Selected Technical Papers STP1531
Mobile Bearing Total Knee Replacement Devices

JAI Guest Editors:
Kathy K. Trier
A. Seth Greenwald

ASTM International
100 Barr Harbor Drive
PO Box C700
West Conshohocken, PA 19428-2959

Printed in the U.S.A.

ASTM Stock #: STP1531
Library of Congress Cataloging-in-Publication Data
Mobile bearing total knee replacement devices / guest editors, Kathy K. Trier, A. Seth Greenwald.

p. cm. -- (Journal of ASTM International. Selected technical papers; STP1531)
Includes bibliographical references and indexes.
I. Trier, Kathy K. II. Greenwald, A. Seth. III. ASTM International. IV. Series:
Prosthesis--adverse effects--Congresses. 2. Arthroplasty, Replacement, Knee--methods--
Congresses. 3. Equipment Failure Analysis--Congresses. 4. Prosthesis Failure--etiology--Congresses. 5. Treatment Outcome--Congresses.
WE 870]
617.5'820592--dc23 2012006149

Copyright © 2012 ASTM INTERNATIONAL, West Conshohocken, PA. All rights
reserved. This material may not be reproduced or copied, in whole or in part, in any printed,
mechanical, electronic, film, or other distribution and storage media, without the
written consent of the publisher.

Journal of ASTM International (JAI) Scope
The JAI is a multi-disciplinary forum to serve the international scientific and engineering
community through the timely publication of the results of original research and
critical review articles in the physical and life sciences and engineering technologies.
These peer-reviewed papers cover diverse topics relevant to the science and research that
establish the foundation for standards development within ASTM International.

Photocopy Rights
Authorization to photocopy items for internal, personal, or educational classroom use, or
the internal, personal, or educational classroom use of specific clients, is granted by
ASTM International provided that the appropriate fee is paid to ASTM International, 100
Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel:
610-832-9634; online: http://www.astm.org/copyright.

The Society is not responsible, as a body, for the statements and opinions expressed in
this publication. ASTM International does not endorse any products represented in this
publication.

Peer Review Policy
Each paper published in this volume was evaluated by two peer reviewers and at least one
editor. The authors addressed all of the reviewers’ comments to the satisfaction of both
the technical editor(s) and the ASTM International Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the au-
thors and the technical editor(s), but also the work of the peer reviewers. In keeping with
long-standing publication practices, ASTM International maintains the anonymity of the
peer reviewers. The ASTM International Committee on Publications acknowledges with
appreciation their dedication and contribution of time and effort on behalf of ASTM
International.

Citation of Papers
When citing papers from this publication, the appropriate citation includes the paper
authors, “paper title”, J. ASTM Intl., volume and number, Paper doi, ASTM International,
West Conshohocken, PA, Paper, year listed in the footnote of the paper. A citation is
provided as a footnote on page one of each paper.

Printed in Swedesboro, NJ
February, 2011
Foreword

THIS COMPILATION OF THE JOURNAL OF ASTM INTERNATIONAL (JAI), STP1531, Mobile Bearing Total Knee Replacement Devices, contains only the papers published in JAI that were presented at a symposium in St. Louis, Missouri, on May 18, 2010 and sponsored by ASTM International Committee F04 on Medical and Surgical Materials and Devices.

The JAI Guest Editors are Kathy K. Trier, Corin USA, Clearwater, FL, USA and A. Seth Greenwald, Orthopaedic Research Laboratories, Cleveland, OH, USA.
Contents

Overview ... vii

Standard Testing Methods for Mobile Bearing Knees
 P. S. Walker and H. Haider .. 1

Comparison of Mobile Bearing and Fixed Bearing Total Knee Arthroplasty Outcomes:
A Review of the Literature

31 Year Evolution of the Rotating-Platform Total Knee Replacement:
Coping With “Spinout” and Wear
 F. F. Buechel, Sr., F. F. Buechel, Jr., T. E. Helbig, and M. J. Pappas 27

The Incidence of Anterior Knee Pain and Crepitation After Total Knee Replacement:
A Matched Pair Analysis between Rotating Platform and Fixed Bearing Posterior
Stabilized Designs

Early Instability with Mobile Bearing Total Knee Arthroplasty:
A series of Twenty-Five Cases
 J. T. Moskal, S. R. Ridgeway, and V. J. Williams 55

Utilizing Validated Computational Models to Predict Tibial Insert Abrasion
in Mobile Bearing Knees: A Design Performance Standard
 E. Morra and A. S. Greenwald .. 67

Mobility and Contact Mechanics of a Rotating Platform Total Knee Replacement

Systematic Review of Complications in TKA Mobile Bearing Knees
 C. Hopley and L. Crossett .. 100

The Contribution of Mobile Bearing Knee Design In Optimizing Tibial Rotation
in Total Knee Arthroplasty
 J. B. Stiehl .. 122

In-Vitro Wear and Radiographic Analyses of High Flexion Posterior Stabilized
Mobile- and Fixed-Bearing Knee Implants
 O. Popoola, N. Yu, and G. Scuderi 133

Clinical Results of a Total Knee Prosthesis with Floating Platform at 5.5 Years
 R. Miehlke, R. Geyer, U. Clemens, and B. Thiel 146

Damage and Wear: An Important Distinction in Rotating Platform Knee Bearings

Wear Rate in a Series of Retrieved RP Knee Bearings

Wear of a Mobile Bearing Uni-Compartmental Knee Replacement Prosthesis:
A Comparison of In Vitro and In Vivo Wear Rates
 P. J. Ellison, A. Traynor, B. P. Casey, and S. N. Collins 185

Wear Advantage of a Rotating Bearing Knee–An In Vitro Study
 L. D. Angibaud, A. Burstein, W. B. Balcom, and G. J. Miller 195

In Vitro Knee Wear, Kinematics, and Particle Morphology Among Different Bearing
Geometries in a Mobile Bearing Knee System
Overview

Orthopedic knee replacement is a well accepted and clinically successful treatment procedure that provides pain relief and improved function for millions of people each year. Both fixed bearing and mobile bearing knee devices have well recognized success rates as a general category of device with the primary distinction between them characterized by whether the polyethylene tibial component is affixed in a stationary position in the metal tibial tray (fixed bearing) or whether the polyethylene tibial component is allowed to move on the tibial tray (mobile bearing).

While fixed bearing knee devices existed prior to the Medical Device Amendments of the Federal Food, Drug and Cosmetic Act of 1976, the mobile bearing knee devices were not in existence and thus, having no pre-amendment predicate device to support a Substantial Equivalence determination, were automatically classified as Class III devices.

The mobile bearing knee devices were first introduced in the late 1970s and since that time, several generations of mobile bearing knees have been developed and available on the international market. Designs include unicompartmental and bicondylar, with either platform-style or meniscal bearing design of the polyethylene articulating surface, with variations in the mobility of the polyethylene, type of constraint of the polyethylene and treatment of the PCL.

In the U.S., the first mobile bearing knee cleared for marketing through the FDA was the Low Contact Stress (LCS) Meniscal Bearing, Cemented, Tri-compartmental Knee (DePuy, Warsaw, IN) with PMA approval in 1985. The Rotating Platform version and cementless application gained PMA approval shortly thereafter. In comparison with the global market, the number of mobile bearing knee devices available in the U.S. has been limited in part as a result of the regulatory pathway to commercialization for a Class III device.

Reclassification of mobile bearing knee devices from Class III to Class II has been proposed since the late 1990’s with petitions submitted by the Orthopaedic Surgical Manufacturers Association (OSMA) to the FDA. The 1997 reclassification petition was reviewed by the FDA Advisory Panel on July 25, 1997 with the panel determination that there was insufficient evidence to provide reasonable assurance of safety and efficacy for the entire class of mobile bearing knees to be reclassified and recommended that tricompartmental and unicompartmental mobile bearing knees remain Class III devices. A second reclassification petition was favorably reviewed by the FDA Advisory Panel on June 4, 2004 but subsequently denied by FDA on October 28, 2004. Communications with FDA focused on the need for special controls, particularly pre-clinical bench tests that would distinguish
between clinically successful and unsuccessful designs and also recommended working with ASTM to develop consensus standards to address this need.

A determination for reclassification of mobile bearing knee devices from Class III to Class II requires that general controls and special controls, recognized by FDA, can provide reasonable assurance of the safety and effectiveness of the devices and that testing will be able to differentiate between good and bad designs and that test outcomes should be predictive of clinical outcomes. In 2007, ASTM standards development was initiated to incorporate testing for mobile bearing knee designs into existing ASTM knee standards for fixed bearing knee designs and include F1223 Test Method for Determination of Total Knee Replacement Constraint, F1800 Test Method for Cyclic Fatigue Testing of Metal Tibial Tray Components of Total Knee joint Replacements, and F2083 Standard Specification for Total Knee Prosthesis. In addition, four (4) new standards have been developed specifically for mobile bearing knee designs and include F2722 Evaluating Mobile Bearing Knee Tibial Baseplate Rotational Stops, F2723 Evaluating Mobile Bearing Knee Tibial Baseplate/Bearing Resistance to Dynamic Disassociation, F2724 Evaluating Mobile Bearing Knee Dislocation, and F2777 Evaluating Knee Bearing (Tibial Insert) Endurance and Deformation Under High Flexion. The goal of this work was to provide consensus standards that would address the required special controls to mitigate identified risks of all knee device designs. An added revision of F2083 is currently in process to provide a guidance document that covers all known clinical risks associated with the use of knee replacement devices and calls out relevant test methods across a wide range of generic knee designs, unicompound and bicondylar, fixed and mobile bearings.

The purpose of the ASTM Symposium on Mobile Bearing Knee Devices, May 2010, and this compilation of the papers as presented (STP1531) are to provide a scientific discussion on mechanical testing with regards to their relevance to clinical outcomes and clinical failures. The call for papers requested discussion of clinical data that is relevant to bench performance on the following topics related to mobile bearing total knee replacement devices:

- Mobile bearing knee tibial baseplate/ bearing resistance to dynamic disassociation.
- Mobile bearing knee tibial baseplate rotational stops.
- Dislocation, spin out, spit out.
- Determination of constraint for mobile bearing total knee replacements
- Cyclic fatigue testing of metal tibial tray components for mobile bearing total knee joint replacements.
• Knee bearing (tibial insert) endurance and deformation under high flexion for mobile bearing knee replacements.
• Knee bearing (tibial insert) wear including backside wear.
• Contact area, contact pressure distribution for mobile bearing knee joint replacements.
• Range of motion testing for mobile bearing knee joint replacements.

All presenters were encouraged to submit their work for inclusion and were peer reviewed using independent qualified reviewers. Given the specific goal of the symposium, peer review criteria to meet editorial requirements were liberal.

Two papers serve to provide a context for the remaining papers presented here (STP1531). The first provides an overview of the standards development as described and the second provides an updated review of the literature on clinical outcomes of mobile bearing knee devices. The following symposium papers have been organized under four themes that address the above specified clinical risks. For obvious reasons, while papers are organized under the key themes, they may overlap across themes.

Component Disassociation

The intent of this section is to present clinical papers that address ASTM F2724 and F2723 test methods, mobile bearing knee dislocation and tibial tray/polyethylene bearing disassociation respectively. Papers describe clinical results related to spin out, polyethylene dislocation and subluxation related to differing implant designs. One paper describes implant design modifications which were implemented to address spin out. Other papers report results of the relationship of polyethylene dislocation on revisions and a comparison of crepitation and pain following TKA with posterior stabilized designs, both rotating platform and fixed bearing.

Mechanical Fracture

Test methods to evaluate rotational stop (F2722) and polyethylene bearing deformation/fracture (F2777) are newly developed standards while testing for tibial tray fatigue/fracture (F1800) has been used with regards to fixed bearing knee designs. The papers in this section include a discussion of validated computational models using finite element (FE) methods to visualize the magnitude and location of stresses on the polyethylene bearing and identify parameters that vary with in vivo movement. Results demonstrate that FE models successfully predict clinically observed results.
Functional Performance

Papers in this section look at clinical outcomes as they relate to alignment and range of motion, measuring intraoperative rotation (F1223 constraint) and postoperative revisions as a result of spinout and dislocation. Wear simulator and wear particle analysis, clinical and radiographic results, and evaluation of the impact of the tibio-femoral bearing on abrasive wear, tibio-femoral kinematics and particle release across different designs are discussed. The focus of these papers are on knee devices with rotational mobility (rotational and linear motion) between the polyethylene bearing and tibial tray with one paper suggesting that the benefit the mobile bearing devices offers is self alignment to accommodate small rotational misalignments.

Longevity and Wear

F2083 addresses the specification of test methods for knee replacement devices and covers known clinical risks associated with the use of knee replacement devices, both fixed and mobile bearings. Focus in this section is on contact area, backside wear and total wear. Two papers addressing backside wear in mobile bearing rotating platform total knee designs evaluate the distinction between bearing wear and bearing damage suggesting that damage is not a proxy for polyethylene wear and the rate of wear over time with a mobile bearing device compared to a fixed bearing knee device. Papers also discuss a conservative measurement of total wear penetration and penetration rate in one mobile bearing design and a method for simulation of wear in mobile bearing unicompartmental knee replacement. Comparisons of total wear for many different knee device designs, both fixed bearing and mobile bearing and total and unicompartmental in a wide range of sizes, are reported. Key questions address “Do mobile bearing knee devices produce less total wear than fixed bearing devices? Is the difference found across knee devices a result of materials and implant designs?”

Significant and Future Work

Central to the discussion during the symposium was the fundamental question – “Are the standards sufficient to differentiate across mobile bearing device designs and predict clinical outcomes?” It is clear that some mobile bearing knee designs have long successful clinical history. A number of papers provided test results specific to a particular device design while others covered a wider range of designs. A common thread throughout the papers and symposium discussions is that few knee devices (fixed and mobile) today experience clinical failures making it difficult to validate ASTM test methods by testing both “good” and “bad” device designs via round robin
testing. It is appropriate to suggest that testing completed on the currently successful mobile bearing devices can serve as a measure of validation for the knee device standards. It is important to remind that these knee standards have been developed by consensus of the members of the ASTM F04 Arthroplasty subcommittee and that the collective experience and knowledge of the breadth of knee device design is extensive.

Kathy K. Trier
Corin USA
Clearwater, FL, USA

A. Seth Greenwald
Orthopaedic Research Laboratories
Cleveland, OH, USA

JAI Guest Editors