Tissue Engineered Medical Products (TEMPs)

Eliane Schutte, Grace L. Picciolo, and David Kaplan, editors

ASTM Stock Number: STP1452

ASTM
100 Barr Harbor Drive
PO Box C700
West Conshohocken, PA 19428-2959

Printed in the U.S.A.
Foreword

This publication, *Tissue Engineered Medical Products (TEMPS)*, contains papers presented at the symposium of the same name held in Miami Beach, Florida, on 4-5 November, 2002. The symposium was sponsored by the ASTM International Committee F4 on Medical and Surgical Materials and Devices and its Division IV on Tissue Engineered Medical Products, in cooperation with Biomat.net, The Society for Biomaterials and The Tissue Engineering Society. The symposium co-chairpersons were Eliane Schutte, IsoTis BV, The Netherlands, Grace L. Picciolo, USFDA (Retired), Rockville, MD., and David S. Kaplan, FDA/CDRH, Rockville, MD.
Contents

FOREWORD

WHAT TECHNOLOGY DO WE HAVE AND HOW IS IT DOING?

Measurement of Pore Size and Porosity of Tissue Scaffolds—P. TOMLINS, P. GRANT,
S. MIKHALOVSKY, S. JAMES, AND L. MIKHALOVSKA 3

Development and Validation of a Detection Method for a Broad Range of Human
Papillomavirus Types—D. N. GALBRAITH, T. COLLINS, J. BLACK, B. MC MANUS,
D. MC MUTRIE, AND A. LOVATT 12

Bronchoscopic Lung Volume Reduction—A Novel Tissue Engineering Treatment for
Advanced Emphysema—E. P. INGENITO, L. TSAI, R. L. BERGER, AND A. HOFFMAN 20

NIST and Standards for Tissue Engineered Medical Products—J. A. TESK
AND L. R. KARAM 40

Mechanical Evaluation of Allograft Bone—M. C. SUMMITT, D. M. K. SQUILACE,
AND J. R. BIANCHI 47

Method to Determine Germicidal Inactivation in Allograft Processing—C. R. MILLS,
M. R. ROBERTS, J. Y. CHANG, J. R. BIANCHI, AND M. C. SUMMITT 54

Towards In-Situ Monitoring of Cell Growth in Tissue Engineering Scaffolds:
High Resolution Optical Techniques—M. T. CICERONE, J. P. DUNKERS,
AND N. R. WASHBURN 59

Cartilage Mechanical Properties after Injury—D. D. D’LIMA, N. STEKLOV, A. BERGULA,
P. C. CHEN, C. W. COLWELL, AND M. LOTZ 67

Age Related Differences in Chondrocyte Viability and Biosynthetic Response
To Mechanical Injury—D. D. D’LIMA, A. BERGULA, P. C. CHEN, C. W. COLWELL
AND M. LOTZ 77
A Comparative Study of Biomarkers of Oxidative DNA Damage Used to Detect Free Radical Damage in Tissue-Engineered Skin—H. RODRIGUEZ, P. JARUGA, M. BIRINCIOGLU, P. E. BARKER, C. O’CONNER, AND M. DIZDAROGLU 84

Endpoint Verification of Bone Demineralization for Tissue Engineering Applications—C. B. THOMAS, L. JENKINS, J. F. KELLAM, AND K. J. L. BURG 90

Comparative Study of Bone Cell Culture Methods for Tissue Engineering Applications—C. B. THOMAS, J. F. KELLAM, AND K. J. L. BURG 100

A New Method for Real-Time and In-Situ Characterization of the Mechanical and Material Properties of Biological Tissue Constructs—G. ZHANG AND J. L. GILBERT 120

WHAT STANDARDS EXIST AND WHAT STANDARDS ARE NEEDED?

Alginate and Chitosan Standards for Tissue Engineered Medical Products—M. DORNISH AND A. DESSEN 137


Development of Standards for the Characterization of Natural Materials Used in Tissue Engineered Medical Products (TEMps)—D. S. KAPLAN 172

Microbiological Safety and Adventitious Agents Standards for TEMPS—G. SOFER 176

Standards Used in Meeting Requirements for a Model Pre-Market Approval (PMA) of a Neural Guidance Conduit—L. STOVER AND L. HUBEL 182


WHAT STANDARDS ARE USED GLOBALLY AND HOW BY THE REGULATORY BODIES FOR APPROVALS?

The European Situation on Standards for Tissue Engineering Products—E. SCHUTTE 213

A European View on Risk Management Strategies for Tissue Engineered Medical Products (TEMps)—R. E. GEERTSMA, M. KALLEWAARD, AND C. WASSENAAR 226


A Useful Marker for Evaluating the Safety and Efficacy of Tissue Engineered Products—T. TSUCHIYA 254

AUTHOR INDEX 263

SUBJECT INDEX 265