Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components

Michael G. Jenkins
Edgar Lara-Curzio
Stephen T. Gonczy

EDITORS

ASTM STP 1392
Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components

Michael G. Jenkins, Edgar Lara-Curzio, and Stephen T. Gonczy, editors

ASTM Stock Number: STP1392

ASTM
100 Barr Harbor Drive
PO Box C700
West Conshohocken, PA 19428-2959

Printed in the U.S.A.
Foreword

Contents

Overview vii

Plenary

Relationships of Test Methods and Standards Development to Emerging and Retrofit CFCC Markets—T. R. Barnett, G. C. Ojard, and R. R. Cairo 3

Room-Temperature Test Results/Methods

Multiple-Laboratory Round-Robin Study of the Flexural, Shear, and Tensile Behavior of a Two-Dimensionally Woven Nicalon™/Sylramic™ Ceramic Matrix Composite—M. G. Jenkins, E. Lara-Curzio, S. T. Gonczy, and L. P. Zawada 15

Test Procedures for Determining the Delamination Toughness of Ceramic Matrix Composites as a Function of Mode Ratio, Temperature, and Layup—J. J. Polaha and B. D. Davidson 31

Detailed Study of the Tensile Behavior of a Two-Dimensionally Woven Nicalon™/Sylramic™ Ceramic Matrix Composite—M. G. Jenkins and L. P. Zawada 48

Testing Methodology for Measuring Throughthickness Tensile Strength for Ceramic Matrix Composites—L. P. Zawada and K. E. Goecke 62

Flexural and Tensile Properties of a Two-Dimensional Nicalon™-Reinforced Sylramic™ S-200 Ceramic Matrix Composite—S. T. Gonczy and M. G. Jenkins 86

Test Results/Methods Related to Design Implications

Stress-Rupture, Overstressing, and a New Methodology to Assess the High-Temperature Durability and Reliability of CFCCs—E. Lara-Curzio 107

Use of Unload/Reload Methodologies to Investigate the Thermal Degradation of an Alumina Fiber-Reinforced Ceramic Matrix Composite—C. X. Campbell and M. G. Jenkins 118

Fiber Test Development for Ceramic Composite Thermomechanical Properties—J. A. DiCarlo and H. M. Yun 134

Effect of Fiber Waviness on the Tensile Response of 2D C(f)/SiC Ceramic Matrix Composites—M. Steen 148
Surface Finish and Notch Effect Model for Strength Predictions of Continuous Fiber Ceramic Composites (CFCCs)—M. RAMULU, M. G. JENKINS, AND S. KUNAPORN 160

Notch-Sensitivity of a Woven Oxide/Oxide Ceramic Matrix Composite—R. JOHN, D. J. BUCHANAN, AND L. P. ZAWADA 172

ENVIRONMENTAL EFFECTS AND CHARACTERIZATION

Oxidation Behavior of Non-Oxide Ceramics in a High-Pressure, High-Temperature Steam Environment—M. K. FERBER, H. T. LIN, AND J. KEISER 201

The Time-Dependent Deformation of Carbon Fiber-Reinforced Melt-Infiltrated Silicon Carbide Ceramic Matrix Composites: Stress-Rupture and Stress-Relaxation Behavior in Air at 1000°C—E. LARA-CURZIO AND M. SINGH 216

The Relationship between Interphase Oxidation and Time-Dependent Failure in SiC_y/SiC_m Composites—C. A. LEWINSOHN, C. H. HENAGER JR., E. P. SIMONEN, C. F. WINDISCH JR., AND R. H. JONES 229

DAMAGE ACCUMULATION AND MATERIAL DEVELOPMENT

Characterization of Damage Accumulation in a Carbon Fiber-Reinforced Silicon Carbide Ceramic Matrix Composite (C/SiC) Subjected to Mechanical Loadings at Intermediate Temperature—M. VERRILLI, P. KANTZOS, AND J. TELESMAN 245

Effect of Loading Mode on High-Temperature Tensile Deformation of a SiC/SiC Composite—Ö. ÜNAL 262

Effects of Temperature and Environment on the Mechanical Properties of Tyrrano-Hex™ Composites—M. DRISSI-HABTI, N. TAKEDA, K. NAKANO, Y. KANNO, AND T. ISHIKAWA 276

Degradation of Continuous Fiber Ceramic Matrix Composites under Constant Load Conditions—M. C. HALBIG, D. N. BREWER, AND A. J. ECKEL 290

Damage Accumulation in 2-D Woven SiC/SiC Ceramic Matrix Composites—G. N. MORSCHER, J. Z. GYEKENYESI, AND R. T. BHATT 306

Summary 321

Author Index 327

Subject Index 329
Overview

In the nearly decade and a half since its establishment in 1986, ASTM Committee C28 has provided a major forum for promoting standardized terminology, guides, classifications, practices, and test methods for advanced (a.k.a. structural, fine, and technical) ceramics. In particular, since 1991 ASTM Subcommittee C28.07 on Ceramic Matrix ASTM Composites has actively and vigorously introduced and promoted standards and activities nationally (for example, through other ASTM committees, Military Handbook 17, ASME Boiler and Pressure Vessel Code, etc.) and internationally (for example, through ISO) for advanced ceramic matrix composites, specifically continuous fiber ceramic composites.

Continuing these efforts, this publication and the Symposium on Environmental, Mechanical, and Thermal Properties and Performance of Continuous Fiber Ceramic Composite (CFCC) Materials and Components which was held in Seattle, Washington, 18 May 1999 were sponsored by ASTM Committee C28. Twenty-two papers were presented at the symposium and this publication contains twenty-one peer-reviewed manuscripts on continuous fiber-reinforced advanced ceramic composites, related test methods (standards), materials characterization, and design applications.

The advancement of technology has often been limited by the availability of materials and understanding of their behavior. Reflecting this emphasis on materials, in the technology of today, the US government has supported programs such as the Continuous Fiber Ceramic Composites (CFCCs), High Speed Research, and Enabling Propulsion Materials Programs which target specific new materials such as CFCCs for a broad range of applications, from chemical processing, to stationary heat engines, to power generation, to aerospace vehicles. Such applications require that still-emerging materials such as CFCCs be refined, processed, characterized, and manufactured in sufficient volume for successful widespread use in aggressive thermal/mechanical/environmental operating conditions. Concurrently, as the materials are refined, designers must have access to material properties and performance databases in order to integrate the material systems into their advanced engineering concepts. Without extensive materials characterization, producers of materials cannot evaluate relative process improvements nor can designers have confidence in the performance of the material for a particular application.

Developing and verifying appropriate test methods as well as generating design data and design experience for advanced materials is expensive and time consuming. High-temperature ceramic composites are more expensive to process than monolithic ceramics, not just because of the extra cost of constituent materials but also because of labor-intensive fabrication steps. Equipment for testing at elevated temperatures is highly specialized and expensive. Unique and novel test methods must be developed to take into account thermal stresses, stress gradients, measurement capabilities, gripping methods, environmental effects, statistical considerations, and limited material quantities. It is therefore imperative that test methods be carefully developed, standardized, verified, and utilized so that accurate and statistically significant data are generated and duplication of efforts can be minimized in test programs. Similarly, design codes must be written to establish which information on material properties and performance are required for particular applications as well as which standard test methods are recommended to quantify this information.

The papers in this publication provide current results of research and development programs on continuous fiber ceramic composites. The papers are divided into four major categories:

1. Room-Temperature Test Results/Methods
2. Test Results/Methods Related to Design Implications
3. Environmental Effects and Characterization
4. Damage Accumulation and Material Development
The sections addressing these categories contain papers on various types of continuous fiber ceramic composites, including those with matrices synthesized by chemical vapor infiltration (CVI), polymer impregnation and pyrolysis (PIP), melt infiltration (MI), or viscous glass infiltration. The Room-Temperature Test Results/Methods section includes papers on results of a round-robin program that used several full-consensus standards, influence of various test parameters on the tensile, shear and flexural behavior, novel transtickness tensile strength method, and delamination “toughness” and its effects. The section on Test Results/Methods Related to Design Implications includes papers on stress rupture, stress-relaxation and overstressing effects on testing and design, unload/reload tensile tests, fiber testing, fiber waviness, surface finish notch effects and notch sensitivity. The papers in the Environmental Effects and Characterization section address the thermal diffusivity changes due to microstructural damage, oxidation behavior in aggressive environments, time dependent deformation, and the effects of interphase oxidation. In the section on Damage Accumulation and Material Development, papers address damage accumulation during mechanical loading, effect of loading mode, temperature and environmental degradation of a novel pre-commercial material, degradation under constant load, and process development of a novel material system.

With this symposium and the resulting special technical publication, ASTM has made another stride forward in standardization activities by providing a wealth of information on continuous fiber ceramic composites. This information will assist the research, processing, and design community in better understanding the behavior, characterization and design nuances of these materials. This information is also invaluable for standards and code development background as test methods continue to be introduced and verified for continuous fiber ceramic matrix composites.

Michael G. Jenkins
Department of Mechanical Engineering
University of Washington
Seattle, WA 98195-2600
Symposium co-chair and co-editor

Edgar Lara-Curzio
Mechanical Characterization and Analysis Group
Oak Ridge National Laboratory
Oak Ridge, TN 37831-67064
Symposium co-chair and co-editor

Stephen T. Gonczy
Gateway Materials Technology
Mt. Prospect, IL 60056
Symposium co-chair and co-editor