Composite Materials: Fatigue and Fracture, Seventh Volume

Ronald B. Bucinell, Editor

ASTM Stock #: STP 1330

ASTM
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Printed in the U.S.A.
Foreword

This publication, Composite Materials: Fatigue and Fracture, Seventh Volume, contains papers presented at the Seventh Symposium on Composites: Fatigue and Fracture, held in St. Louis, Missouri, on 7–8 May 1997. The sponsor of the event was Committee D-30 on Composite Materials and Committee E-8 on Fatigue and Fracture.

The symposium chairman was Ronald B. Bucinell, Union College, Department of Mechanical Engineering, Schenectady, NY. He also served as editor of this publication.
Contents

Overview vii

Fatigue and Fracture

Composite Interlaminar Shear Fracture Toughness, G_{ic}: Shear Measurement or Sheer Myth?—T. KEVIN O'BRIEN 3

Overview of Biaxial Test Results for Carbon Fiber Composites—STEPHEN R. SWANSON 19

Application of a Stochastic Model for Fatigue-Induced Delamination Growth in Graphite/Epoxy Laminates—RONALD B. BUCINELL 34

An Approach to Include Interfacial Wear Effects in Modeling Fatigue Crack Growth of Titanium Matrix Composites—GEOFFREY T. WARD AND BEN M. HILLBERRY 55

Compression Strength Reduction in Composites with In-Plane Fiber Waviness—P. J. JOYCE AND T. J. MOON 76

Fatigue Debonding Characterization in Composite Skin/Stringer Configurations—MICHAEL K. CVITKOVICH, T. KEVIN O'BRIEN, AND PIERRE J. MINGUET 97

Effect of Stress and Geometry on Fatigue Crack Growth Perpendicular to Fibers in Ti-6Al-4V Reinforced with Unidirectional SiC Fibers—REJI JOHN, JAY R. JIRA, AND JAMES M. LARSEN 122

An Experimental Investigation of Transverse Tension Fatigue Characterization of IM6/3501-6 Composite Materials Using a Three-Point Bend Test—ANN W. PECK 145

Environmental Considerations

Life Prediction Tool for Ceramic Matrix Composites at Elevated Temperatures—SCOTT CASE, NIRMAL IYENGAR, AND KENNETH REIFSNIDER 165
The Effects of Stress and Temperature on the Open-Hole Tension Fatigue Behavior of a Graphite/Bismaleimide Composite—WILLIAM M. JOHNSTON AND THOMAS S. GATES 179

Influence of Temperature and Stress Ratio on the Low-Cycle Fatigue Behavior of Trimarc-1/Ti-6Al-2Sn-4Zr-2Mo—DENNIS J. BUCHANAN, REJI JOHN, AND KENNETH E. GOECKE 199

Environmental Fatigue of Pultruded Glass-Fiber-Reinforced Composites—KIN LIAO, CARL R. SCHULTHEISZ, DONALD L. HUNSTON, AND L. CATHERINE BRINSON 217

IMPACT

The Effects of Tensile Preloads on the Impact Response of Carbon/Epoxy Laminates—ALAN T. NETTLES 249

Differences in the Impact Response Mechanisms of Graphite/Epoxy Composite Cylinders—JOEL E. PATTERSON 263

Testing and Simulation of Laminated Composites Subjected to Impact Loading—DAHSIN LIU AND XINGLAI DANG 273

Residual Strength Prediction of Impact-Damaged Composite Structures by Optical and Acoustical Computer Sensing with Neural Network Techniques—MATTHEW D. LANSING, JAMES L. WALKER, AND SAMUEL S. RUSSELL 285

PERSPECTIVE

Fatigue and Fracture of Art Made from Composite Materials—JAMES K. REILLY 301

Indexes 307
Overview

The Seventh Symposium on Composites: Fatigue and Fracture was held on 7–8 May 1997 in St. Louis, Missouri. It was sponsored by ASTM Committee D-30 on Composite Materials and ASTM Committee E-8 on Fatigue and Fracture. The main purpose of the symposium was to provide a forum for presentations and discussions on the recent developments in fatigue and fracture of composites. Specifically called for were papers describing experimental and analytical research in the following areas of composite technology: failure mechanisms, nondestructive evaluation, environmental effects, prediction methodology, test method development, and impact. A total of 21 papers were presented in five sessions. The conference sessions were chaired by A. T. Nettles and M. K. Cvitkovich of NASA Langley Research Center, D. Cohen of Alent Tech Systems, J. E. Patterson of U.S. Army Missile Command, M. D. Lansing of University of Alabama at Huntsville, T. Chu of Southern Illinois University at Carbondale, and R. H. Martin of MERL. During the symposium T. K. O’Brien was awarded the Wayne Stinchcomb Memorial Award. As a result of the presentation evaluations taken during the symposium, M. K. Cvitkovich was given the award for the best presentation of a paper at the symposium.

Composite materials are found in many commercial, military, and aerospace structures. Most of these applications involve cyclic loads, foreign body impact, or thermomechanical loading. Optimizing the design of these structures requires full characterization of composite material response to the various load scenarios. Cost-effective characterization involves a combination of test methods that isolate specific phenomena of interest and models that can correlate the test method results with the actual structural behavior. The papers included in this volume address many of the important aspects of fatigue and fracture behavior of composite materials.

The papers included in this volume are classified into Fatigue and Fracture, Environmental Considerations, Impact, and Perspective sections. The papers include treatises on polymer, metal, and ceramic matrix composite materials. Included in the Fatigue and Fracture section are papers concerned with microstructural effects, damage, predictive tools, and test method development. The Environmental Considerations section focuses on the affects of temperature and other environmental factors on the long-term durability of composite structures. In the Impact section papers discuss impact response, damage formation, and the use of NDE techniques as a predictive tool. Finally, the Perspective section provides an artistic view of composite materials.

Fatigue and Fracture

O’Brien argues that the apparent G_{Ile} as typically measured is inconsistent with the original definition of shear fracture. He shows that the interlaminar shear failure actually consists of tension failures in the resin-rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in the fracture mechanics theory. He presents several strain energy release rate solutions for delamination in composite laminates and structural components where failures have been experimentally documented. It is shown that failures typically occur at a location where the mode I component accounts for at least one half of the total G at failure. He
argues that it is the Mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service.

Swanson presents biaxial tests to determine the stiffness and strength properties of carbon/epoxy material systems using tubular specimens. Loading includes biaxial tension, biaxial compression, mixed tension and compression, and compression under superposed pressure. The tests show a number of features that can be interpreted on both a macroscopic and a micromechanics level. He argues that relating the laminate failure values to the properties of the fiber and matrix requires a more detailed examination at the micromechanics level. He observes that ultimate fiber direction tensile strain values apparently depend on the details of the interaction of matrix cracking and fiber-matrix interphase strength, and thus in situ fiber strength in a laminate differs from that in a tow test.

Bucinell presents a stochastic model that predicts the growth of delamination in graphite/epoxy laminates subjected to cyclic loading. The advantage of this model is shown to be that both the mean and variance associated with the growth of delamination are predicted. He argues that understanding and predicting the variability associated with the delamination growth process is essential to the estimation of the reliability of composite structures. The empirical nature of the model has been minimized through the introduction of fracture mechanics parameters. The application of the model is demonstrated through an experimental evaluation that illustrates the ability of the model to predict both the mean and variance of the delamination growth process in composite laminates subjected to cyclic loading.

Ward and Hillberry present the development of an approach to fatigue crack propagation in titanium matrix composites that includes the effects on interfacial wear on the fiber-bridging behavior. They use a Coulomb friction-based fiber-bridging model, in which the effect of fiber surface roughness on the clamping stress between the fiber and matrix is included. They incorporate a previously developed wear model as a means to determine the reduction of the fiber surface roughness amplitude during fatigue cycling. They show that as the roughness decreases, its contribution to the clamping stress also decreases, resulting in a lower interfacial shear stress. The predictions of the developed model are shown to correlate well with experimental results for different loading conditions, especially those at the relatively high crack growth rates.

Joyce and Moon present their investigation of the effect of fiber waviness, which develops during the processing and manufacturing of fiber-reinforced composite structures, on compressive failure. They present data from a series of compression tests examining the effects of varying levels of in-plane fiber waviness. These tests use a novel combined shear/end loading compression test fixture to ameliorate problems typically associated with pure end-loading and pure shear loading. The fixture is shown to perform adequately when testing wavy specimens, but experienced repeated tab failures in the nonwavy specimens.

Cvitkovich, O'Brien, and Minguet present their investigation of the fatigue damage mechanisms and the influence of skin stacking sequence in carbon epoxy composite bonded skin/stringer constructions. A simple four-point-bending test fixture originally designed for previously performed monotonic tests was presented to evaluate the fatigue debonding mechanisms between the skin and the bonded frame. Microscopic investigations of the specimen edges were used to document the onset of matrix cracking and delamination, and subsequent fatigue delamination growth. The fatigue delamination growth experiments are presented and are found to include matrix cracking and delamination onset as a function of fatigue cycles as well as delamination length as a function of the number of cycles.

John, Jira, and Larsen present their results of an extensive characterization of the fatigue crack growth behavior of a model titanium alloy composite (TMC). The model TMC system used was $[0]_{9}$ SCS-6/Ti-6Al-4V. Presented are the results from tests conducted under tension fatigue loading at room temperature with a stress ratio of 0.1. The authors also discuss the
ability of the shear lag model to predict the crack growth in these composites under a wide range of stress levels.

Peck presents her investigation of the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90-degree laminae, she uses a three-point bend test. She argues that this potentially minimizes handling and gripping issues associated with tension tests. She presents the results of 50 specimens of nine different size configurations. She also presents the results of three-point flex fatigue testing on the smallest configuration for 59 specimens at various levels using an R ratio of 0.1 and a frequency of 20 Hz.

Environmental Considerations

Case, Iyengar, and Reifsnider present a life prediction method for ceramic matrix composites. Their model is based upon damage mechanics concepts included in the framework of the critical element model. One unique feature of the model is its ability to include general variations of temperature and applied loads as functions of time. They present a detailed description of the application of the model to elevated temperature fatigue. In addition, a validation example is presented that includes the combined effects of rupture and fatigue.

Johnston and Gates present their experimental investigation of the behavior of an open hole tension (OHT) graphite/bismaleimide composite specimen loaded in tension-tension fatigue under isothermal, fixed-frequency conditions. A range of stress levels and temperature levels were chosen to assess performance. The results of this work are shown to help explain the roles of aging and fatigue damage in the performance of OHT specimens of this material as well as providing insights to the individual and synergistic contributions of each of these processes.

Buchanan, John, and Goecke present their results of an experimental investigation of load-controlled isothermal low-cycle fatigue behavior of a titanium matrix (TMC). The TMC used in this investigation was composed of Ti-6Al-2Sn-4Zr-2Mo matrix (wire) reinforced with silicon-carbide (Trimarc-1™) fibers. The longitudinal fatigue data presented show good correlation with other TMC systems at both positive and negative stress ratios. The authors successfully use the Walker equation to correlate the longitudinal S-N data for stress ratios $R = -1.3$ and 0.1, and for predictions at $R = 0.5$ and 0.7. They show that the maximum fiber stress versus cycles to failure for several unidirectional TMC systems at similar test conditions consolidate to a narrow band, indicating that the life is fiber-dominated. The S-N behavior of the TMC, subjected to transverse fatigue loading, is successfully predicted using the matrix S-N data and a net-section model.

Liao, Schultheisz, Hunston, and Brinson study pultruded glass-fiber-reinforced vinyl ester composite coupons subjected to four-point-bend environmental fatigue to investigate long-term durability for infrastructure applications. Specimens were tested dry and while immersed in water and in solutions of water containing mass fractions of 5 and 10% NaCl salt. Some specimens were also preconditioned by soaking in the water or salt solution for 5 to 6 months without loading; the preconditioned are shown to fractionally decrease 5 to 13% in flexural strength compared to dry specimens. The authors find that for specimens cyclically loaded at or above 45% of the average flexural strength of dry coupons, no change in the fatigue life was observed for the specimens tested while immersed in the fluids as compared to specimens tested dry. The authors argue that the long-term environmental fatigue behavior is not controlled by the quantity of water absorbed; rather, it is governed by a combination of both load and fluid environment. However, they point out that a difference in fatigue life in the different fluid environments was not demonstrated.

Zaffaroni, Cappelletti, Rigamonti, Fambri, and Pegoretti discuss the accelerated hot-wet aging of glass-reinforced epoxy resin at 45 and 70°C at the same level of relative humidity
(RH = 84%). The authors compare the mechanical and physical properties of dry and differently saturated composites. The authors find that the higher the conditioning temperature the higher the equilibrium moisture content. The glass transition temperature is found to decrease for both the two moisture-saturated cases. The authors also found that the moisture absorption reduces the static properties while not modifying the endurance in fatigue tests.

Impact

Nettles presents the results of the low-velocity instrumented dropweight tests performed on carbon/epoxy laminates. The composite plates used in this study are 8-ply [+45/0/ -45/90], laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load applied. The author shows that for a given impact energy level, more damage is induced into the specimen as the external in-plane load is increased. The majority of damage observed is shown to consist of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. A simple free-edge delamination model is presented to explain the type and extent of the major delaminations caused by the preload/impact combinations.

Patterson presents a test program that was conducted to characterize the impact response of graphite/epoxy structures. The design of the test article utilized for this program was directed toward a generic thin-walled structure applicable for use as a rocket motorcase or launch tube. Low-energy impacts were imparted to empty cylinders and to cylinders whose casewalls were strengthened to simulate launch tube and rocket motorcase configurations. The author discussed the differences between the test configurations with regard to visual damage, impact load, absorbed energy, and casewall deflection.

Liu and Dang discuss their evaluation of the response of composite laminates under low-velocity impact using instrumented impact tests and computer simulations. The computational scheme developed by the authors included composite laminates with various thicknesses, fiber angles, and impact velocities. These results show that the peak contact force and maximum deflection are strongly affected by the thickness of composite laminates, while the fiber angles investigated seemed to play a less significant role.

Lansing, Walker, and Russell present the results of an experimental study in which two computer-sensing techniques are used to monitor filament-wound pressure vessels during pressurization. Acoustic emission was used to register the sound generated by microscopic damage propagation. Video image correlation is a noncontact computer vision technique that simultaneously measures full-field in-plane surface displacements and strains, both linear and angular, with subpixel accuracy. Neural networks were used to predict the burst pressures of impacted pressure vessels based upon data obtained at less than approximately one third of the expected burst pressure for an undamaged specimen.

Perspective

Reilly discusses the use of composite materials in sculpture and masonry murals. His discussion includes the effects of fracture by impact, thermal fatigue and fracture, multiaxial loading failure, new composite materials for art, and the monitoring of damage growth. He also shows how fracture of art can be caused by centuries of stress fatigue, pollution, seismic activity, and dynamic impact due to theft or bad custodial care.
Summary

In summary, the editor wishes to thank the authors, session chairmen, reviewers, and Dr. John Masters for working diligently to ensure that the papers included in the symposium and in this STP were of high quality. Also, thanks are extended to the ASTM staff for their efforts and perseverance in bringing the publication of this STP to fruition.

Ronald B. Bucinell

Union College
Department of Mechanical Engineering,
Schenectady, NY;
Symposium Chairman