Composite Materials: Testing and Design, Thirteenth Volume

Steven J. Hooper, editor

ASTM Publication Code Number (PCN):
04-012420-33

ASTM
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959

Printed in the U.S.A.
Foreword


The symposium chairman was Steven J. Hooper, Department of Aerospace Engineering, Wichita State University, Wichita, Kansas. Session chairmen were Peter Sjoblom, University of Dayton Research Institute, Dayton, Ohio; Erian A. Armanios, Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia; Anthony Vizzini, University of Maryland, College Park, Maryland; Charles E. Bakis, Pennsylvania State University, University Park, Pennsylvania; Barry Davidson, Syracuse University, Syracuse, New York; John Fish, Lockheed Martin Skunk Works, Palmdale, California; and Carl Rosseau, Bell Helicopter Textron, Inc., Fort Worth, Texas.
Contents

Overview vii

COMPOSITE DESIGN

Design and Testing of Composite Flywheel Rotors—CHRISTOPHER W. GABRYS AND CHARLES E. BAKIS 3

Probabilistic Composite Design—CHRISTOS C. CHAMIS 23

INTERLAMINAR FRACTURE TOUGHNESS CHARACTERIZATION

Durability and Damage Tolerance: Testing, Simulation, and Other Virtual Realities—KENNETH L. REIFSNIDER 45

Characterizing Static and Fatigue Interlaminar Fracture Behavior of a First Generation Graphite/Epoxy Composite—M. KÖNIG, R. KRÜGER, K. KUSSMAUL, M. VON ALBERTI, AND M. GÄDKE 60

Mode I, Mode II, and Mixed Mode Interlaminar Fracture of Woven Fabric Carbon/Epoxy—NIDAL ALIF, LEIF A. CARLSSON, AND JOHN W. GILLESPIE, JR. 82

INTERLAMINAR FRACTURE MECHANICS

Accuracy Assessment of the Singular-Field-Based Mode-Mix Decomposition Procedure for the Prediction of Delamination—BARRY D. DAVIDSON, PETER L. FARIELLO, RYAN C. HUDSON, AND VISWANATHAN SUNDARARAMAN 109

COMPRESSION TESTING

Compression Buckling Behavior of Laminated Composite Panels—BASANT K. PARIDA, RAGHU V. PRAKASH, A. K. GHOSAL, P. D. MANGALGIRI, AND K. VIJAYARAJU 131

Statistical Microbuckling Propagation Model for Compressive Strength Prediction of Fiber-Reinforced Composites—JOHN S. TOMBLIN AND EVER J. BARBERO 151

Compressive Strength of Unidirectional Composites: Measurements and Prediction—CONSTANTINE SOUTIS 168
METAL MATRIX AND CERAMIC MATRIX COMPOSITES


An Evaluation of Two Fabrication Methods for Hybrid Titanium Composite Laminates—EDWARD LI, W. STEVEN JOHNSON, S. E. LOWTHERE, AND T. L. ST. CLAIR

SHEAR TESTING AND LAMINATE ANALYSIS

Modification of the Three-Rail Shear Test for Composite Materials Under Static and Fatigue Loading—LARRY B. LESSARD, OLIVIA P. EILERS, AND MAHMOOD M. SHOKRIEH

GENERAL ANALYSIS TECHNIQUES

A Coulomb-Mohr Type Criterion for Matrix Mode Failure in a Lamina—SAILENDRA N. CHATTERJEE

Overview

The Thirteenth Symposium on Composite Materials: Testing and Design was held 20–21 May 1996 in Orlando, Florida. This symposium, like many of its predecessors, provided a forum for presentations and discussions of issues critical to the design and testing of composite materials. The papers addressed topics in the areas of composite design, interlaminar fracture mechanics, compression testing, metal matrix and ceramic matrix composites, shear testing, and environmental effects.

The lasting value of the STP is due to the fundamental research lead which provides the basis for improvements in testing and design methods. This theme, which has prevailed since the earliest Testing and Design Symposia, is motivated by the fact that our ability to design composite structures is limited by our understanding of their failures. Investigations at the coupon level often represent the most effective approach to solving these problems.

I would like to acknowledge the efforts of the authors, reviewers, session chairmen, and ASTM staff who made this special technical publication possible.

Steven J. Hooper
Department of Aerospace Engineering,
Wichita State University, Wichita, Kansas;
Symposium Chairman and Editor