SYMPOSIA PAPER Published: 01 January 1990
STP49473S

Irradiation Creep in Austenitic Stainless Steels at 60 to 400°C with a Fusion Reactor Helium to dpa Ratio

Irradiation creep was investigated in the alloys—prime candidate alloy (PCA), Japanese Fusion Energy Program (JPCA), and American Iron and Steel Institute (AISI) 316 (UNS S31600) stainless steel. Tubes pressurized to stress levels of 50 to 400 MPa were irradiated in the Oak Ridge Research Reactor (ORR) with the neutron spectrum tailored to achieve the fusion reactor helium:dpa value of 12 appm/dpa in AISI 316 stainless steel. Irradiation temperatures of 60, 330, and 400°C were investigated, and the irradiation produced 8 dpa and a maximum of about 100 appm helium. Irradiation creep rates of 2.2 to 14 × 10 4 M Pa 1 dpa 1 were observed at 60°C. At 330 and 400°C irradiation creep rates of 1.3 to 3.5 × 10 4 were observed, similar to those found previously in similar experiments in the ORR. The low temperature irradiation creep was interpreted in terms of a new model for irradiation creep based on transient climb-enabled glide. The results are important in the design of experimental fusion reactors where temperatures below 100°C are being considered for the operation of high flux components.

Author Information

Grossbeck, Martin, L.
Oak Ridge National Laboratory, Oak Ridge, TN
Mansur, L., K.
Oak Ridge National Laboratory, Oak Ridge, TN
Tanaka, M., P.
Japan Atomic Energy Research Institute, Tokyo, Japan
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E10
Pages: 537–550
DOI: 10.1520/STP49473S
ISBN-EB: 978-0-8031-8887-7
ISBN-13: 978-0-8031-1266-7