You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Effects of Water Immersion on Building and Civil Engineering Joints and the Use of the Arrhenius Method in Predicting Adhesion Lifetime of Water-Immersed Joints

    Published: 01 January 2010

      Format Pages Price  
    PDF (1012K) 24 $25   ADD TO CART
    Complete Source PDF (117M) 427 $117   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Moisture in the form of humidity, condensation, rain, or water immersion is the most commonly encountered element of the service environment and must be considered a critical factor in determining the long-term reliability of sealed or bonded joints. Moreover, the effects of moisture are exacerbated by elevated temperature. For many polymeric systems, warm, moist environments can considerably weaken the bulk or interfacial performance properties of the jointing materials formulated with these polymers. The majority of joint failures in service environments that comprise water exposure occur by degradation of the interface(s) between sealant or adhesive, primer, and substrate. Therefore, predicting the interfacial degradation in an actual service environment is of utmost importance. This paper provides information on the current understanding of the role of water in the failures of adhesive and sealant joints and discusses the usefulness of the Arrhenius' relation in predicting the lifetime of sealed or bonded joints based on data generated at elevated temperatures. Finally, the paper suggests some guidelines aimed at improving the reliability of accelerated test and prediction procedures used in the evaluation of the durability performance of sealed or adhered joints in immersed environments.


    durability, lifetime, service life, water immersion, joint, sealed, bonded, Arrhenius

    Author Information:

    Wolf, Andreas T.
    Ph.D., Scientist, Dow Corning GmbH, Wiesbaden, Hessia

    Committee/Subcommittee: C24.20

    DOI: 10.1520/STP48965S