You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Methods of Quantitative Electron Probe Analysis

    Published: 0

      Format Pages Price  
    PDF (452K) 23 $25   ADD TO CART
    Complete Source PDF (6.1M) 218 $68   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Methods of quantitative electron probe analysis using empirical working curves have achieved only partial success because of variations in instrument design, analysis conditions, and homogeneity of standards. These problems have been solved for X-ray fluorescence analysis, but many of the more successful empirical methods cannot be used in electron probe analysis; instead, a more theoretical approach is indicated. In electron probe analysis, quantitative results can be achieved with only pure elements as standards provided: (1) the analysis conditions are carefully selected, (2) the observed intensities can be corrected to obtain the primary intensity actually produced in the specimen, and (3) the relationship of the primary intensity and concentration can be calculated. While present methods of making some of the corrections require improvement and a “universal” theory for relating the primary X-ray intensities to the concentrations still does not exist, the success achieved with this approach indicates that it should be used to the fullest extent before resorting to calibration curves. Moreover, as information is accumulated, the number of cases requiring the use of calibration curves should diminish so that eventually it may be possible to perform quantitative analysis in any system with only pure elements as standards

    Author Information:

    Wittry, David B.
    University of Southern California, Los Angeles, Calif.

    Committee/Subcommittee: E13.03

    DOI: 10.1520/STP45951S