You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Analysis of Dynamic Fracture and Crack Arrest of an HSLA Steel in an SE(T) Specimen

    Published: 01 January 2007

      Format Pages Price  
    PDF (1.7M) 26 $25   ADD TO CART
    Complete Source PDF (29M) 518 $74   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    A single edge notch tension, SE(T), specimen was used to measure the dynamic fracture toughness and the crack arrest toughness of a tough HSLA steel in the ductile-brittle transition region. The SE(T) specimen was considerably smaller (W = 152 mm) than wide-plate specimens that have been typically used in other crack arrest tests. A thermal gradient was applied across the ligament of the specimen to facilitate a brittle crack initiation in the low temperature region of the specimen. The cleavage crack propagated into warmer and, consequently, tougher material which led to crack arrest. Transient, three-dimensional, finite element analyses of the tests were performed to determine the dynamic fracture and crack arrest toughness of the steel. The analyses employed both linear elastic and visco-plastic constitutive models. Dynamic strain measurements recorded during the run-arrest event were used to determine the crack tip position as a function of time during the event. This information was used as a boundary condition for the analysis. The measured strains were compared with strains predicted by the finite element analysis to validate the model. The dynamic response of the specimen, the effect of crack speed on the driving force, and the evolution of crack tip plasticity during the run-arrest event are discussed.


    fracture mechanics, crack arrest, dynamic fracture, finite element analysis, toughness

    Author Information:

    Link, Richard E.
    Associate Professor, United States Naval Academy, Annapolis, MD

    Committee/Subcommittee: E08.08

    DOI: 10.1520/STP45532S