You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Modeling the Formation and Growth of Cracks from Cold-Worked Holes

    Published: 01 January 2007

      Format Pages Price  
    PDF (608K) 19 $25   ADD TO CART
    Complete Source PDF (5.4M) 162 $55   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    First generation crack formation and crack growth predictive approaches for cold-worked holes—based on the growth of a single noninteracting crack in a stationary residual stress field—fail to account fully for the physical mechanisms by which cracks form and grow from cold-worked holes. This filure leads in many cases to large differences between predicted and actual lives. Factors not accounted for in first generation approaches include the following: 1. 3-D nature of residual stress field due to mandrel pull-through. 2. Multistage crack growth involving a progressively spreading system of cracks. 3. Multiple potential initial crack sites, and the effect of site upon the multistage crack growth path. 4. Relaxation of the residual stress field due to overloads/underloads, or due to cyclic reyielding from crack growth. 5. Interaction of the hole with adjacent structural elements for multilayer joints. A physics-based second generation methodology for accounting for these factors is described. This methodology separates into individual building blocks each of the various mechanisms controlling the formation and relaxation of residual stresses, and the nucleation and progression of a system of cracks. Because it explicitly models each of these mechanisms, it is capable of eliminating or reducing the uncertainty over the life improvement potential of the cold-working process, allowing the full potential of cold-working to alleviate the aging aircraft problem to be untapped.


    residual stresses, cold-working, fatigue, fracture mechanics, weight function, stress intensity factors

    Author Information:

    Fujimoto, William T.
    Advanced Structural Technology, Inc.,

    Committee/Subcommittee: E08.06

    DOI: 10.1520/STP45323S