SYMPOSIA PAPER Published: 01 January 1977
STP38077S

Computer-Aided Structural Analysis and Design of Concrete Pipe

Source

This paper describes the development of a finite-element computer program to simulate the structural behavior of a buried concrete pipe. The influence of the soil-structure interaction phenomenon is approximated by using appropriate material properties for the bedding and backfill, and by employing empirical hinging mechanisms which enable simulation of the progressive cracking behavior in the model of the concrete pipe. A second approximation, in which the pipe is represented as a linear frame, is introduced for the calculation of internal stress resultants. Various iteration techniques are employed to ensure deformation compatibility between the two pipe models. The results from full-scale experimentation are then used to validate the analytical models.

This model of the soil-pipe system was combined with appropriate serviceability and ultimate strength design criteria for reinforced concrete pipe to produce a comprehensive computer program for the design of buried concrete pipe. The resulting program, entitled NUPIPE, accounts for nonlinear soil-structure interaction, and permits the engineer to obtain the structural design of a given size pipe having a specified fill height and installed in any manner (that is, arbitrary bedding or backfill procedures or both).

The applicability of the new design method is demonstrated by designing various installations. The required steel areas for these installations are compared with those obtained by use of the current design method, and the differences are discussed.

Author Information

Wenzel, TH
Marquette University, Milwaukee, Wis.
Parmelee, RA
The Technological Institute, Northwestern University, Evanston, Ill.
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: C13
Pages: 105–118
DOI: 10.1520/STP38077S
ISBN-EB: 978-0-8031-5545-9
ISBN-13: 978-0-8031-0311-5