SYMPOSIA PAPER Published: 01 January 1983
STP36792S

Experimental Validation of Resistance Curve Analysis

Source

The experimental evidence which supports the existence of stable ductile crack extension in metallic specimens and structures is reviewed and compared with modern failure assessment procedures. The evidence includes data from the following: 1. Materials—aluminium alloys, mild steel, two nickel-chromium-molybdenum-vanadium forging steels, A533B and A508 pressure vessel steels, a quenched-and-tempered steel, austenitic steels, and HY-130. 2. Geometries—3-point bend specimens of various sizes, compact tension specimens plane and side-grooved, single-edge-notched tension specimens, double-edge-notched tension specimens, center-cracked tension panels, wide plate specimens, pressurized pipe geometries, and pressurized nozzle geometries with the crack located in the crotch corner, 3. Section sizes—thicknesses ranged from 2 to 700 mm in specimen geometries with crack sizes between 0.1 and 0.9 of the section.

It is concluded that for materials with a low to moderate capacity for strain hardening, an adequate engineering assessment can be obtained using a simple form of assessment such as the Central Electricity Generating Board's procedures, R6. However, for materials with a high capacity for strain hardening, total elastic plastic behavior can be predicted only by a procedure which allows for this strain hardening capacity explicitly. Nevertheless, the load capacity of such materials appears to be satisfactorily predicted using a flow stress criterion.

Author Information

Milne, I
Central Electricity Research Laboratories, Central Electricity Generating Board, Leatherhead, Surrey, U.K.
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E08
Pages: 657–685
DOI: 10.1520/STP36792S
ISBN-EB: 978-0-8031-4870-3
ISBN-13: 978-0-8031-0726-7