SYMPOSIA PAPER Published: 01 January 1977
STP35590S

Fracture of Zircaloy Cladding by Interactions with Uranium-Dioxide Pellets in Water Reactor Fuel Rods

Source

The paper summarizes the main features of a detailed theoretical study of Zircaloy cladding fracture that is caused by the growth of stress corrosion cracks which form near fuel pellet cracks as a consequence of a power increase after a sufficiently high burn up. It is shown that unless stress corrosion crack growth in irradiated Zircaloy is able to proceed at very low stress intensifications, fracture is unlikely when there are uniform friction effects at the fuel-cladding interface, when the interfacial friction coefficient is less than unity, when a symmetric distribution of fuel cracks exists, and when symmetric interfacial slippage occurs (that is, “uniform” conditions). Otherwise, the observed fuel rod failures must be due to departures from uniform conditions, and this investigation shows that a very high interfacial friction coefficient, and particularly fuel-cladding bonding, are means of providing sufficient stress intensification at a cladding crack tip to explain the occurrence of cladding fractures.

The results of the investigation focus attention on the necessity for reliable experimental data on the stress corrosion crack growth behavior of irradiated Zircaloy and for further investigations on the correlation between local fuel-cladding bonding and stress corrosion cracking.

Author Information

Smith, E
University of Manchester/UMIST, Manchester, United Kingdom
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: B10
Pages: 543–556
DOI: 10.1520/STP35590S
ISBN-EB: 978-0-8031-4705-8
ISBN-13: 978-0-8031-0602-4