SYMPOSIA PAPER Published: 01 January 1974
STP35509S

Comparison of the Mechanical Behavior of Filamentary Reinforced Aluminum and Titanium Alloys

Source

The tensile behavior, erosion/impact resistance, mechanical fatigue strength, thermal fatigue behavior, and creep strength of filamentary reinforced aluminum and titanium alloy matrix composites were briefly compared. Parallel to the filament direction, aluminum matrix composites are slightly stronger than titanium matrix composites up to a temperature of about 600°F (314°C). Titanium matrix composites, however, have shown significant off-axis strength advantage even at room temperature. B/SiC-Ti has shown a five-fold advantage in transverse strength over B-A1 at a test temperature of 500°F (260°C). The erosion rate of fiber-reinforced composites was found to be controlled by the matrix until the filaments became exposed. The titanium matrix, having an order-of-magnitude stronger matrix yield strength, exhibited greatly improved ballistic impact resistance, when compared to the aluminum matrix system. The low-cycle fatigue strength of titanium composite was superior to that of comparable aluminum composite. On the other hand the high-cycle fatigue strength in the 0 deg orientation for the titanium composite was significantly lower than that of a comparable aluminum composite. The resistance to thermal fatigue damage, when measured by tensile strength degradation, delamination, and dimensional distortion, was in favor of titanium composites. The transverse creep strength of B/SiC at 800°F (427°C) was shown to be ten times better than that of B/SiC-A1 at 575°F (302°C).

Author Information

Toth, IJ
TRW Inc., Cleveland, Ohio
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: D30
Pages: 542–560
DOI: 10.1520/STP35509S
ISBN-EB: 978-0-8031-4639-6
ISBN-13: 978-0-8031-0308-5