SYMPOSIA PAPER Published: 01 January 1986
STP33021S

The Need for Rapidly Solidified Powder Metallurgy Aluminum Alloys for Aerospace Applications

Source

A need exists within the aerospace industry for the engineering properties promised by aluminum alloys produced by rapid solidification technology (RST). The extent to which these alloys will achieve technical and commercial success depends, however, upon (1) achievement of the engineering property goals, (2) the degree of success in the development of competitive materials, including other aluminum products, and (3) the economics of using such alloys for any given application, including the total production, fabrication, and life cycle costs for the material. Useful applications of the new RST aluminum alloys are envisioned for each of the three primary groups of aerospace vehicles: aircraft, missiles, and space vehicles. Each of these groups has a different general set of material property and cost objectives. The current powder metallurgy (PM) aluminum alloy development efforts for aerospace applications can be divided conveniently into three categories or classes of alloys: (1) high-strength, corrosion-resistant alloys; (2) low-density, high-modulus alloys; and (3) elevated-temperature, creep-resistant alloys. The development objectives for each of these alloy categories depend on the specific needs of the aerospace market for that category. The current status of progress in the development of the RST aluminum alloys indicates that some technical and economic success will be achieved in each category. The extent of this success is yet to be established. An assessment of various factors that affect the future course of development for these materials is presented.

Author Information

Quist, WE
Boeing Commercial Airplane Co., Seattle, WA
Lewis, RE
Lockheed Palo Alto Research Laboratory, Palo Alto, CA
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: B09
Pages: 7–38
DOI: 10.1520/STP33021S
ISBN-EB: 978-0-8031-4961-8
ISBN-13: 978-0-8031-0442-6