You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Effects of Marine Environment on High-Strength Steels

    Published: 0

      Format Pages Price  
    PDF (632K) 20 $25   ADD TO CART
    Complete Source PDF (3.9M) 151 $55   ADD TO CART


    This investigation summarizes the general and stress-corrosion cracking behavior of several classes of high-strength steels in the marine environment. Eleven experimental heats of maraging steel were evaluated for resistance to stress-corrosion cracking in seawater. Those alloys containing 10 and 12 percent nickel were found to be susceptible to pitting attack and stress-corrosion cracking, while 18 percent nickel maraging steels were found to be highly resistant to pitting attack.

    The corrosion characteristics of 5Ni-Cr-Mo-V HY-130 steel were also investigated in natural seawater. The stress corrosion threshold stress for HY-130 was determined utilizing the criteria of no failure after six months of exposure in natural seawater under sustained stress in the precracked cantilever test. A major portion of the investigative work was concentrated on answering the question of whether long-term continuous cathodic protection of HY-130 in natural seawater will lead to eventual problems associated with hydrogen embrittlement. Preliminary work utilized precracked cantilever specimens, which were precharged with hydrogen at several high-current density levels and then step loaded to failure while still being cathodically protected. Cathodic protection tests were also carried out utilizing two-point loaded bent-beam specimens stressed to 90 percent of the 0.2 percent yield strength which were cathodically protected at 13 and 130 mA/ft2 current densities for one year in low-velocity flowing seawater. The effect of cathodic protection on the low-cycle corrosion fatigue behavior of HY-130 was also determined.


    high-strength steels, corrosion, stress corrosion, hydrogen embrittlement, evaluation, tests

    Author Information:

    Wacker, GA
    Metallurgist, Naval Ship Research and Development Center, Annapolis, Md.

    Committee/Subcommittee: G01.09

    DOI: 10.1520/STP32016S