You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Mixed-Mode Strain-Energy-Release Rate Effects on Edge Delamination of Composites

    Published: 0

      Format Pages Price  
    PDF (356K) 18 $25   ADD TO CART
    Complete Source PDF (4.9M) 281 $55   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Unnotched [±θ/0/90]s graphite/epoxy laminates, designed to delaminate at the edges under static and cyclic tensile loads, were tested and analyzed. The specimen stacking sequences were chosen so that the total strain-energy-release rate, G, for edge delamination was identical for all three layups. However, each layup had different percentages of crack-opening and shear-mode strain-energy-release rates, GI and GII, respectively. Results with composites made from T300 graphite fibers and 5208 epoxy, a brittle resin, indicated that only GI contributed to delamination onset under static loading. However, results with composites made from C6000 fibers and H205 epoxy, a tougher resin, indicated that the total G governed the onset of edge delaminations under cyclic loads. In addition, for both materials, the threshold level of G for delamination onset in fatigue was significantly less than the critical Gc measured in static tests. Furthermore, although the C6000/H205 material had a much higher static Gc than T300/5208, its fatigue resistance was only slightly better. A series of mixed-mode tests, like the ones in this study, may be needed to evaluate toughened-resin composites developed for highly strained composite structures subjected to cyclic loads.


    composite materials, graphite/epoxy, delamination, mixed-mode, fracture mechanics, toughness, fatigue (materials)

    Author Information:

    O'Brien, TK
    Research scientist, Structures Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM), NASA Langley Research Center, Hampton, Va.

    Committee/Subcommittee: E08.01

    DOI: 10.1520/STP30201S