You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Effects of Irradiation on Low Activation Ferritic Alloys: A Review

    Published: 01 January 1990

      Format Pages Price  
    PDF (584K) 17 $25   ADD TO CART
    Complete Source PDF (7.1M) 252 $60   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    A broad composition range of ferritic alloys exists which satisfy the low activation requirement for fusion reactor materials five hundred years after decommissioning. Low activation bainitic alloys in the Fe-2Cr composition range, martensitic alloys in the Fe-7-to-9Cr range and stabilized martensitic alloys in the Fe-12Cr range have been successfully fabricated and are undergoing testing as demonstrated by efforts in Europe, Japan, and the United States. However, irradiation significantly degrades the properties of bainitic and stabilized martensitic alloys. Bainitic alloys containing vanadium develop severe hardening due to irradiation-induced precipitation at temperatures below 450°C and extreme softening due to carbide coarsening at temperatures above 500°C. Stabilized martensitic alloys which rely on manganese additions to provide a fully martensitic microstructure are embrittled at grain boundaries following irradiation leading to severe degradation of impact properties. The most promising composition regime appears to be the Fe-7-to-9Cr range with tungsten additions in the 2% range where high-temperature mechanical properties and microstructural stability are retained and impact properties are relatively unaffected by irradiation.


    bainitic, Charpy tests, ferritic, impact properties, martensitic, microstructure, neutron irradiation, phase stability, steels, swelling, tensile properties

    Author Information:

    Gelles, DS
    Staff scientist, Pacific Northwest Laboratory, Richland, WA

    Committee/Subcommittee: E10.02

    DOI: 10.1520/STP24953S