You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Cavitation and Embrittlement in Tritium Exposed Copper

    Published: 01 January 1990

      Format Pages Price  
    PDF (356K) 13 $25   ADD TO CART
    Complete Source PDF (18M) 672 $247   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Prolonged exposure of oxygen-free, high conductivity (OFHC) copper to high pressure tritium gas has been found to result in the development of severe microstructural damage. The damage takes the form of very flat, crack-like intergranular cavities. At the same time, tritium exposure profoundly affects the mechanical properties of the alloy, inducing a severe loss in ductility. In concert with the observed ductility loss is a change in fracture morphology from transgranular ductile rupture to intergranular fracture. Examination of the resulting grain boundary facets reveals a dimple structure. The spacing of these dimples can be correlated with the spacing of the exposure-induced grain boundary cavities. The extent of cavitation and the subsequent embrittlement is found to be sensitive to both the specimen grain size as well as the tritium charging and aging temperature. The nucleation and growth of these cavities is attributed to the helium-3 born in the metal as the result of tritium decay. Being insoluble in the metal lattice, the helium migrates to grain boundaries where it is trapped and agglomerates to form small clusters (or cavity nuclei). These cavities then grow by both the precipitation of tritium dissolved in the metal and by the precipitation of additional helium generated from the continuous decay of the tritium within the metal.


    tritium exposure, helium, cavitation, embrittlement, intergranular fracture

    Author Information:

    Goods, SH
    Member of technical staff, Sandia National Laboratories, Livermore, CA

    Committee/Subcommittee: E10.02

    DOI: 10.1520/STP24652S