SYMPOSIA PAPER Published: 01 January 1993
STP24297S

Effect of Fiber-Matrix Debonding on Notched Strength of Titanium Metal-Matrix Composites

Source

Two specimen configurations of a [0/90]2s SCS-6/Ti-15-3 laminate were tested and analyzed: a center-hole (CH) specimen and a double-edge-notched (DEN) specimen. The two specimen configurations failed at similar stress levels in spite of the large difference in the stress concentration factors for the two geometries. Microscopic examinations of the failure surfaces indicated more fiber-matrix debonding at the notch tip in the DEN specimen than in the CH specimen. Based on the experimental results, it was hypothesized that the radial stresses that developed at the fiber-matrix interface ahead of the notch tip in the DEN specimen caused fiber-matrix debonding in the 0° plies, thus lowering the stress concentration in the DEN specimen to a level comparable to that of the CH specimen.

Two analytical techniques, a three-dimensional finite-element analysis and a macro-micro-mechanical analysis, were used to predict the overall stress-deformation behavior and the notch-tip fiber-matrix interface stresses in both configurations. The micromechanical analysis predicted radial stresses next to the notch in the DEN configuration that were nearly seven times as large as those predicted for the CH configuration. The overall stress-deformation response of both configurations was predicted accurately when debonding of the 90° plies was included. Predictions of the axial stress in the notch-tip 0° fiber correlated well with the specimen static strength when fiber-matrix debonding of 0° plies was included for the DEN specimen. The results shown indicate that a first fiber failure criteria based on the axial stress in the first intact 0° fiber can predict the static strength of notched specimens when interfacial damage is modeled.

Author Information

Bigelow, CA
NASA Langley Research Center, Hampton, VA
Johnson, WS
NASA Langley Research Center, Hampton, VA
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E08
Pages: 696–712
DOI: 10.1520/STP24297S
ISBN-EB: 978-0-8031-5241-0
ISBN-13: 978-0-8031-1867-6