You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Detection of Hydrogen-Assisted Crack Growth by Measurement of Modulus Changes and Acoustic Emission

    Published: 01 January 1986

      Format Pages Price  
    PDF (312K) 14 $25   ADD TO CART
    Complete Source PDF (9.2M) 520 $70   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    An investigation of new techniques to probe and study the initiation of cracks in a hydrogen environment is reported. The techniques investigated are the precise continuous measurement of changes in the elastic modulus and acoustic emission measurements. A decrease in the elastic modulus should be observed as cracks nucleate and grow in a test material. Measurements of changes in the elastic modulus while cathodically charging a number of iron base materials both at zero load and under applied load are also given.

    In all cases a decrease in the elastic modulus was observed as a result of cathodic charging with hydrogen. The modulus loss was found to be permanent and could not be restored by heat treatment. Acoustic emission measurement were carried out as miniature pressure vessels were pressurized and subsequently held at pressure. Differences in the acoustic emission were observed for vessels pressurized with hydrogen gas as compared to vessels pressurized with helium. Considerably more acoustic emission was generated in vessels pressurized with hydrogen.


    hydrogen, crack nucleation, crack propagation, cathodic charging, modulus measurements, acoustic emission

    Author Information:

    Carpenter, SH
    Professor of physics, University of Denver, Denver, CO

    Armstrong, J
    Staff scientist, Materials Engineering, Martin Marieta Corp., Denver, CO

    Heiple, CR
    Senior scientist, Rockwell International, Rocky Flats Plant, Golden, CO

    Committee/Subcommittee: E07.04

    DOI: 10.1520/STP17444S