You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Treatment of Reversed Sigmoidal Curves for Fractal Analysis

    Published: 0

      Format Pages Price  
    PDF (164K) 11 $25   ADD TO CART
    Complete Source PDF (11M) 387 $82   ADD TO CART


    A modified fractal equation is proposed for the irregular profiles obtained from metal fracture surfaces. Experimental results do not conform to the self-similitude postulate of Mandelbrot. Instead a reversed sigmoidal curve is obtained in the fractal plot. A new procedure is developed whereby a linear fractal plot and a constant fractal dimension are obtained. A parallel fractal equation is provided for rough, irregular surfaces. The details of the new analyses are presented in depth, emphasizing the assumptions and advantages underlying the adopted procedure.


    Fracture surfaces, fracture profiles, fractal analysis, reversed sigmoidal curves, modified fractal dimensions

    Author Information:

    Underwood, EE
    Professor Emeritus, Georgia Institute of Technology, Atlanta, GA

    Committee/Subcommittee: E04.01

    DOI: 10.1520/STP17278S