You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Fatigue Crack Growth Behavior of Ti-1100 at Elevated Temperature

    Published: 01 January 1995

      Format Pages Price  
    PDF (276K) 14 $25   ADD TO CART
    Complete Source PDF (17M) 834 $109   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Effects of temperature, frequency, and cycles with superimposed hold times are evaluated in Ti-1100 in order to study the complex creep-fatigue-environment interactions in this material. Crack growth rate tests conducted at a cyclic loading frequency of 1.0 Hz show that raising the temperature from 593 to 650°C has only a slightly detrimental effect on crack growth rate, although these temperatures produce growth rates significantly higher than at room temperature. From constant △K tests, the effects of temperature at constant frequency show a minimum crack growth rate at 250°C. From the minimum crack growth rate at 250°C, the crack growth rate increases linearly with temperature. Increases in frequency at constant temperatures of 593 and 650°C produce a continuous decrease in growth rate in going from 0.001 to 1.0 Hz, although the behavior is primarily cycle dependent in this region. Tests at 1.0 Hz with superimposed hold times from 1 to 1000 s are used to evaluate creep-fatigue-environment interactions. Hold times at maximum load are found to initially decrease and then increase the cyclic crack growth rate with increasing duration. This is attributed to crack-tip blunting during short hold times and environmental degradation at long hold times. Hold times at minimum load show no change in growth rates, indicating that there is no net environmental degradation to the bulk material beyond that experienced during the baseline 1 Hz cycling.


    frequency, temperature, hold times, crack growth rate, △, K, environment, Titanium, threshold

    Author Information:

    Maxwell, DC
    Materials Test Specialist, University of Dayton Research Institute, Dayton, OH

    Nicholas, T
    Senior Scientist, Air Force Wright Laboratory, Wright-Patterson AFB, OH

    Committee/Subcommittee: E08.06

    DOI: 10.1520/STP16409S