You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Stress-Intensity-Factor Influence Coefficients for Semielliptical Inner-Surface Flaws in Clad Pressure Vessels

    Published: 01 January 1995

      Format Pages Price  
    PDF (280K) 14 $25   ADD TO CART
    Complete Source PDF (17M) 834 $109   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    A problem of particular interest in pressure vessel technology is the calculation of accurate stress-intensity factors for semielliptical surface cracks in cylinders. Computing costs for direct solution techniques can be prohibitive when applied to three-dimensional (3-D) geometries with time-varying boundary conditions such as those associated with pressurized thermal shock. An alternative superposition technique requires the calculation of a set of influence coefficients for a given 3-D crack model that can be superimposed to obtain mode-I stress-intensity factors. This paper presents stress-intensity-factor influence coefficients (SIFICs) for axially and circumferentially oriented finite-length semielliptical inner-surface flaws with aspect ratios [total crack length (2c) to crack depth (a)] of 2, 6, and 10 for clad cylinders having an internal radius (Ri) to wall thickness (t) ratio of 10. SIFICs are computed for flaw depths in the range of 0.01 ≤ a/t ≤ 0.5 and two cladding thicknesses. The incorporation of this SIFIC data base in fracture mechanics codes will facilitate the generation of fracture mechanics solutions for a wide range of flaw geometries as may be required in structural integrity assessments of pressurized-water and boiling-water reactors.


    stress-intensity-factor influence coefficient, pressurized thermal shock, finite-length flaw, reactor pressure vessel, superposition

    Author Information:

    Keeney, JA
    Engineers, Oak Ridge National Laboratory, Oak Ridge, TN

    Bryson, JW
    Engineers, Oak Ridge National Laboratory, Oak Ridge, TN

    Committee/Subcommittee: E08.03

    DOI: 10.1520/STP16399S