You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Exploration and Evaluation of the Performance and Durability of SSG Systems by Dynamic–Mechanical System Testing

    Published: 17 February 2015

      Format Pages Price  
    PDF (3.5M) 30 $25   ADD TO CART
    Complete Source PDF (11M) 436 $123   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    Structural sealant glazing (SSG) is an impressive technical response to the challenges of modern structural design. The evaluation of fitness for use as well as durability is a precondition for approval of SSG-façades by building authorities because of their special safety relevance. However, the potential of the actual evaluation methodology to reproduce performance as well as durability under real use conditions is generally assessed to be limited. The concept so far is criticized as mainly single-loading and incomplete in comparison to the real use conditions. The exercised separation of the in reality interacting loading effects is assessed as insufficient and inadequate to explore performance. Consequently, the performance and capability of SSG-solutions is only fragmentarily explored. However, the most restricting argument so far is the deficit of the actual test methodology for life cycle prognosis under interacting mechanical as well as climatic loads. Because of the limited acceptance, additional structural design conditions are imposed by the authorities. Besides this restriction, there is also an increasing demand by the authorities, architects, and users for determinable working life cycles, not least under economic aspects. That is why knowledge, particularly regarding SSG-performance and durability, must be expanded. Together with partners representing all branches involved in façade engineering (engineering design, sealant producer, applicator, and cladding company) the Federal Institute for Materials Research and Testing (BAM) develops a new system test focused on the substrate–sealant–glass panel interaction. With it, a new comprehensive dynamic–mechanical evaluation methodology already introduced at the fourth Symposium in Anaheim, CA, in 2011 shall be complemented by a performance-related system test. Subject-matter of this contribution is the presentation of a new dynamic–mechanical system test method and its first experimental application on SSG-systems. We describe our approach beginning with the discussion of relevant load effects on sealant joints and with the help of a highly generalized finite element (FE) analysis. Resulting from a parameter study of various load combinations acting on different SSG-construction types, we derive a practicable deformation load function from the decisive load categories taking into account regular as well as extraordinary loads. Assumptions and procedures to quantify their parameter values (regarding the effective direction and order of deformation magnitude affecting the substrate–sealant–glass bond) are discussed. The calculated decisive sealant deformations resulting from the parameter study are validated by simplified mechanical plausibility tests. Subsequently, the transfer of the findings about the substrate–sealant–glass panel bond loading into the design and construction of an adapted system test specimen and the development of a multifunctional test facility is introduced. The multi-functional applicability of the system test device is discussed. On the basis of results during our actual operational checks, first ideas about system performance and durability under superimposed loading are presented. A validation of this new test methodology by comparison to test results of disassembled samples and in situ results is a task for separate research activities.


    sealants, structural glazing, performance-oriented test procedure, dynamic–mechanical system test method, superimposed loading, performance evaluation, durability evaluation

    Author Information:

    Recknagel, Christoph
    Working Group “Road Construction and Sealing Technology,” Federal Institute for Materials Research and Testing (BAM), Berlin,

    Kaatz, R.
    Working Group “Road Construction and Sealing Technology,” Federal Institute for Materials Research and Testing (BAM), Berlin,

    Committee/Subcommittee: C24.87

    DOI: 10.1520/STP158320140064