You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Numerical Modeling of Ductile Tearing Effects on Cleavage Fracture Toughness

    Published: Jan 1995

      Format Pages Price  
    PDF (584K) 34 $25   ADD TO CART
    Complete Source PDF (11M) 541 $120   ADD TO CART


    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (Jc) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often < 1–2 mm) routinely precede termination of the Ja curve by brittle fracture. Large-scale yielding, coupled with small amounts of ductile tearing, magnifies the impact of small variations in microscale material properties on the macroscopic fracture toughness which contributes to the large amount scatter observed in measured Jc-values.

    Previous work by the authors described a micromechanics fracture model to correct measured Jc-values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. Ductile crack extensions of 10–15 · the crack-tip opening displacement at initiation are considered in plane-strain, finite element computations. The finite element results demonstrate a significant elevation in crack-tip constraint due to macroscopic “sharpening” of the extending tip relative to the blunt tip at initiation of growth. However, this effect is offset partially by the additional plastic deformation associated with the increased applied J required to grow the crack. The initial a/W ratio, tearing modulus, strain hardening exponent and specimen size interact in a complex manner to define the evolving near-tip conditions for cleavage fracture. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515).


    cleavage, size effects, scatter, stable crack growth, finite elements

    Author Information:

    Dodds, RH
    Professor and research assistant, University of Illinois, Urbana, IL

    Tang, M
    Professor and research assistant, University of Illinois, Urbana, IL

    Anderson, TL
    Associate professor, Texas A&M University, College Station, TX

    Committee/Subcommittee: E08.06

    DOI: 10.1520/STP14633S