You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    Published: 01 January 2000

      Format Pages Price  
    PDF (396K) 25 $25   ADD TO CART
    Complete Source PDF (8.8M) 432 $149   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in a thin-sheet 2024-T3 aluminum alloy under threshold and constant-Kmax testing procedures. Two methods of calculating crack-opening stresses were compared: one based on contact-K analyses and the other on contact crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading but under load-reduction (threshold) simulations the contact-K analyses gave lower crack-opening stresses than the contact-COD method. Crack-growth load-reduction simulations showed that remote closure (crack surface contact away from the crack tip) can cause a rapid rise in opening stresses in the near threshold regime for low-constraint (plane-stress) conditions and high applied stress levels for both low and high stress ratios. Under low applied stress levels and high constraint (near plane-strain) conditions, a rise in crack-opening stresses was not observed near the threshold regime. But the residual crack-tip-opening displacements (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy. In contrast, under constant-Kmax testing, the CTOD near threshold were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations were much larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxides and roughness, play an integral part in threshold development.


    fatigue crack growth, thresholds, fracture mechanics, cracks, stress-intensity factor, crack closure, plasticity, constraint

    Author Information:

    Newman, JC
    Senior Scientist, NASA Langley Research Center, Hampton, Virginia

    Committee/Subcommittee: E08.06

    DOI: 10.1520/STP13436S