You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Fracture Mechanics Validity Limits and Physical Evidence of Constraint in Fracture

    Published: 01 January 2000

      Format Pages Price  
    PDF (464K) 24 $25   ADD TO CART
    Complete Source PDF (11M) 473 $138   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    The consideration of fracture behavior should be a matter of vital concern in current design efforts. Many materials exhibit grossly different behavior when discontinuities are present in the structure. These may be inherent in the material or may stem from poor manufacturing, handling, and /or design practices. Inclusion of fracture behavior in the design models is the subject of fracture mechanics. Ultimately, a knowledge of fatigue and fracture becomes very important in avoiding disaster.

    This paper is written with two primary purposes: to characterize the physical nature of fracture, and to dramatize the need to characterize the central flat fracture differently from the surface, shear fracture. To this end, the contents of the paper are organized as follows: (1) validity limits of fracture mechanics: this information was originally developed for the purpose of extracting similar fracture data and will be used here to help characterize bulk constraint effects and to establish the existence of the surface effect; (2) analysis of crack face displacements of planar specimens subjected to loads: this includes actual crack-, separation-, and stretch-profiles; and (3) consideration of three-dimensional fracture in light of the existence of two distinct fracture zones that exhibit different failure mechanisms; for this purpose, G and J as a function of depth below surface are discussed, as well as several constraint factors as a function of depth.


    EPFM, fracture, fracture mechanics, constraint, COD, CTOD, displacement-based fracture characterization, J, -integral, modified , J, -integral, metals

    Author Information:

    Lambert, DM
    Assistant professor of Engineering Studies, Georgia Southern University, Statesboro, GA

    Ernst, HA
    Head, Center for Industrial Research, Techint Organization, Buenos Aires,

    Committee/Subcommittee: E08.08

    DOI: 10.1520/STP13399S