You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass

    Application of Small Specimens to Fracture Mechanics Characterization of Irradiated Pressure Vessel Steels

    Published: 01 January 1997

      Format Pages Price  
    PDF (404K) 17 $25   ADD TO CART
    Complete Source PDF (13M) 691 $114   ADD TO CART

    Cite this document

    X Add email address send
      .RIS For RefWorks, EndNote, ProCite, Reference Manager, Zoteo, and many others.   .DOCX For Microsoft Word


    In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic KJc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate 02, were used to position the master curve and a 5% tolerance bound for KJc data. By converting PCVN data to 1T compact specimen equivalent KJc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic KIc database and the ASME lower bound KIc curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of KJc. with respect to KIc in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for KJc data from PCVN specimens.


    precracked Charpy, fracture toughness, master curve, reconstitution, reactor pressure vessel

    Author Information:

    Sokolov, MA
    Oak Ridge National Laboratory, Oak RidgeTN

    Wallin, K
    Technical Research Centre of Finland,

    McCabe, DE
    Oak Ridge National Laboratory, Oak RidgeTN

    Committee/Subcommittee: E08.04

    DOI: 10.1520/STP12312S